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ABSTRACT

This paper proposes an effective end-to-end face detection
and recognition framework based on deep convolutional neu-
ral networks for home service robots. We combine the state-
of-the-art region proposal based deep detection network with
the deep face embedding network into an end-to-end system,
so that the detection and recognition networks can share the
same deep convolutional layers, enabling significant reduc-
tion of computation through sharing convolutional features.
The detection network is robust to large occlusion, and scale,
pose, and lighting variations. The recognition network does
not require explicit face alignment, which enables an effec-
tive training strategy to generate a unified network. A prac-
tical robot system is also developed based on the proposed
framework, where the system automatically asks for a mini-
mum level of human supervision when needed, and no com-
plicated region-level face annotation is required. Experiments
are conducted over WIDER and LFW benchmarks, as well as
a personalized dataset collected from an office setting, which
demonstrate state-of-the-art performance of our system.

Index Terms— Face Detection, Face Recognition, Con-
volutional Neural Network

1. INTRODUCTION

Being able to detect and recognize human faces is essential
for home service robots in a variety of applications such as
home security and surveillance, as well as personalization and
natural user-robot interaction. The recent significant advances
in face detection [1, 2, 3] and face recognition [4, 5, 6] by
using deep neural networks make it possible to handle several
challenging conditions: large pose variations and occlusions,
difficult lighting conditions, and poor-quality images with
large motion blurs. However, some issues remain unsolved
for practical systems to operate in personalized home envi-
ronments, including limitations in computing powers, and the
lack of training data for personalized face identification.

Most current systems decompose the face detection and
recognition task into three stages: face detection where faces
are localized in an input image, face alignment where the de-
tected face is warped into a 2D or 3D canonical face model,

and face recognition where the aligned face is classified into
different identities. Each part has been actively studied in the
field and near-human performances have been achieved over
many benchmark datasets. Also, recent work [4, 5] has shown
that deep convolutional neural networks (CNN) can get good
recognition performance without explicit face alignment.

In this paper, we propose an end-to-end deep CNN-based
face detection and recognition framework for home service
robots. We combine the state-of-the-art region proposal net-
work (RPN) based detection [7] and the FaceNet embedding
network [4] in an end-to-end framework as described in Fig-
ure 1. The main advantages of the proposed system lie in three
folds. (1) At test time, the face detection and face recognition
modules share computation through sharing the same deep
convolutional layers, which significantly reduces the com-
putation memory requirement and computation time. This
is essentially important for robotic applications with limited
on-robot computing powers. (2) The RPN-based face detec-
tion network is powerful in localizing faces with large scale,
pose, and lighting variations and with large occlusions. Com-
pared with cascade-CNN [2], the feature map generated by
RPN-based detection network has higher capacity for better
recognition later on. Compared with the Faceness network
designed for face detection [3], the RPN-based face detector
shares a common set of convolutional layers with the later
recognition module. (3) The FaceNet embedding framework
does not require explicit 2D or 3D face alignment, which en-
ables an effective training strategy that trains the detection
and embedding networks to generate a unified network with
shared convolutional features.

Based on the proposed end-to-end CNN-based face detec-
tion and recognition network, we further develop a practical
home service robot system with automatic face collection and
remote model training and updates, as described in Figure 2.
Our system automatically asks for human supervision when
needed, i.e., when an unknown identify is introduced to the
robot for the first time. Also, only minimum amount of hu-
man supervision is required, i.e., providing associated names
for the unknown identify to the robot. With automatic data
collection using combined face detection and tracking, our
system does not require complicated region-level face anno-
tation that is too expensive to acquire in practical applications.
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The final robot system is trained in two stages. Before
being deployed into any specific home, the end-to-end net-
work described in Figure 1 is pre-trained on the challenging
WIDER face detection benchmark [8] and LFW face recogni-
tion benchmark [9]. After deployment, layers of the recogni-
tion network are fine-tuned according to newly collected data
in the deployed home environment, and successive classifiers
are trained to classify different identities in the home. Ex-
periments over FDDB [10] and LFW [9] benchmarks and a
self-collected dataset in an office setting demonstrate the ef-
fectiveness of our system.

Fig. 1. The unified network structure for end-to-end face detection
and recognition.

Fig. 2. The practical face detection and recognition framework
for home service robots with automatic face collection and remote
model training and updates.

2. RELATED WORK

2.1. Face detection

Viola and Jones [11] first introduced fast boosted cascade
classifier using Haar-like features. Among the many vari-
ants using the cascade structure, state-of-the-art face detec-
tion performance was achieved by [12], which combines face
detection and alignment in the same cascade framework. By
treating a face as a collection of facial parts, deformable part
models (DPM) [13, 14] can handle occlusions more robustly
than cascade based methods. These two types of approaches
dominated the face detection field in the past decade.

Due to the recent advances in object detection and recog-
nition using deep neural networks [7, 15], researchers have
revisited the face detection methods using neural networks,
which was once actively studied in the field [16]. Recent stud-
ies [1] showed that by using the high capacity of deep CNNs,
the performance of face detection can be further improved,
especially in the challenging conditions with large pose varia-
tions and occlusions. Furthermore, the Faceness network was
proposed in [3], which was specially designed to discover fa-
cial part responses. A cascade CNN framework was devel-
oped in [2] for detecting faces at multiple scales. The most

recent experiments in [17] show that using the region proposal
network [7] as the face detector gives better performance than
these specially designed face detection networks.

2.2. Face recognition
Significant advances have been achieved by using deep neu-
ral networks for face verification and recognition. Many ap-
proaches use a multi-stage framework, where faces are first
aligned, either to a canonical frontal view [18] or to a general
3D model [6], and then CNNs are learned in conjunction with
a classifier (e.g., SVM) for face classification. Without ex-
plicit face alignment, the work of [5] trains a network with
combined verification and classification loss to achieve ef-
fective recognition. Later on, the FaceNet framework is pro-
posed [4], which learns an optimal feature embedding for face
verification, classification, and clustering. It has been shown
that the state-of-the-art face recognition performance can be
achieved without explicit 2D or 3D face alignment [4].

3. NETWORK STRUCTURE

In this work, we propose an effective face detection and
recognition system based on end-to-end deep convolutional
neural networks. Figure 1 shows the overall network structure
of our system. Specifically, our system is composed of two
parts, the detection network and the recognition network. The
detection network follows the structure of the faster R-CNN
network developed in [7], which is further composed of two
modules: the deep fully convolutional network module for
region proposal and the fast R-CNN [19] detector that uses
the proposed regions. In our network, the last fully connected
layer of the fast R-CNN module computes softmax over only
2 categories, face and non-face. All other structures of the
fully convolutional and the faster R-CNN network remain the
same as in [7].

The recognition network follows the structure of the deep
CNN based FaceNet [4]. Since our goal is to share computa-
tion between detection and recognition networks, we assume
that both the detection network and the recognition network
share a common set of convolutional layers. In our final sys-
tem, we use the VGG-16 model [20] with 13 sharable con-
volutional layers. It is worth mentioning that we have tried
the Zeiler and Fergus model (ZF) [21], which has 5 sharable
convolution layers. However, experiments showed significant
performance drop when using ZF network. With VGG-16,
through the detection network, a 512 × 7 × 7 feature map
is generated after the RoI pooling layer for each face region
x, which is treated as inputs to the recognition network. The
recognition network is composed of several fully connected
layers, followed by an L2 normalization layer, which com-
putes an embedding f(x), such that the squared distance be-
tween all faces of the same identify is small, while the squared
distance between a pair of faces from different identifies is
large. That is, the embedding feature space Rd is discrim-
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inative and a shallow classifier such as SVM trained in this
feature space can separate different identities easily.

In our final system, 3 fully connected layers are used in
the recognition network, whose input/output parameters are
shown in Table 1. The network is learned though minimizing
the triplet loss:
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α is a margin that is enforced between positive and negative
pairs, xp

i , xn
i , and xa

i represent the positive, negative, and an-
chor sample, respectively. T is the set of all possible triplets
in the training set.

layer size-in size-out kernel param

fc1 512×7×7 1×32×128 maxout p=2 103M

fc2 1×32×128 1×32×128 maxout p=2 17M

fc3 1×32×128 1×1×128 524K

L2 1×1×128 1×1×128 0

Table 1. Structure of the recognition network layers.

3.1. Training Strategy

The network described in Figure 1 is first pre-trained before
the robot is deployed to any home. After being deployed to a
specific home, the recognition network layers are fine-tuned
using the newly acquired data from that home environment,
while the detection network layers are fixed without change.

The pre-train process has two steps, which pre-train the
detection and embedding networks to generate a unified net-
work with shared convolutional features. In the first step, the
faster R-CNN network is trained using the recently released
WIDER dataset [8], following the approximate joint training
process suggested in [7]. This network is initialized with an
ImageNet-pre-trained model and fined-tuned over WIDER.
The WIDER dataset has high degree of variability in scale,
pose and occlusion in the training data, which is close to the
actual environment our system operates in. In the second
step, a pre-train recognition network is trained using the LFW
[9] dataset, whose structure is shown in Figure 3. This pre-
train recognition network follows the structure of the FaceNet
model, and the last few layers (3 fully connected layers fol-
lowed by an L2 normalization layer) are the same as the final
unified network in Figure 1. In training, the convolutional
layers of this network come from the pre-trained detection
network model from step 1 and are fixed. The remaining lay-
ers are initialized with an ImageNet-pre-trained model and
fine-tuned over LFW, using SGD with 0.5 dropout rate. The
feature map of this pre-trained network has the dimension
512 × 7 × 7 to match the recognition network layers in the
final unified network. After these two steps, the final pre-
trained unified detection and recognition network has the de-
tection layers from the pre-trained detection network in step
1, and has the recognition layers from the pre-trained recog-
nition network from step 2.

Fig. 3. The pre-train recognition network structure.

4. ROBOT SYSTEM
We develop a practical system for home service robots to au-
tomatically operate in deployed homes. As described in Fig-
ure 2, the system has two parts, on-robot processing and on-
server processing. Our robot is a ClearPath Turtlebot 2 [22]
equipped with a Laptop with Intel i7 CPU and GTX 980m
GPU, as shown in Figure 4. The color inputs come from
an Asus Xtion Pro Live RGBD sensor (VGA res). The face
detection and recognition network is on the robot computing
platform. In a regular thread, face detection is performed at 1
fps. Once faces are detected, the robot starts to detect faces
at 3 fps and track faces at 30 fps, using the kernelized corre-
lation filters (KCF) tracker [23]. The detected faces are fed
forward through the recognition network to compute a 128-
dim embedding feature for each face, which are transferred to
the server for further classification. Compared with directly
transferring the RGB sequence to the server and performing
all computations on the server, the current system has much
less transmission overhead, i.e., 128 float numbers per face
versus the original VGA images. Based on our observation,
the transmission speed is one main source of response delays
and can cause system instability sometimes.

On the server, each face is classified into various identities
using its embedding feature. For consistently unrecognized
face, an exception thread is initiated, where the robot asks
the unknown person for verification. For family members or
friends who know how to verify, a name will be acquired from
the person to be associated with the face data. Then a new
classifier is trained for the new person. The training data come
from the detection thread at 3 fps, which continues until the
face tracker is lost. If the verification failed, the unknown
face is treated as potential stranger and alerts will be sent to
the owner. For recognized faces, the new face data will be
used as additional training data to update classifiers or fine-
tune the recognition network layers on the server. In practice,
the fine-tuning only happens when many training data (e.g.,
3000) have been newly acquired for many identities (e.g., 8).

Fig. 4. The robot platform. The Jetson TX1 performs navigation
tasks. The laptop performs detection/recognition tasks.
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5. EXPERIMENTS

We first evaluate the pre-trained end-to-end detection and
recognition network in Figure 1 before the system is de-
ployed to any specific homes, and then evaluate the robot
system in Figure 2 after deployment.

5.1. Evaluating the pre-trained network
The face detection network is pre-trained over the challenging
WIDER dataset [8], which contains 159,424 training faces.
The large variations in pose, scale, facial expression, occlu-
sion, and background clutters are close to our practical prob-
lems. The trained model is then evaluated over the FDDB
benchmark [10]. Extensive experiments have been conducted
by Jiang and Learned-Miller in [17] on using the faster R-
CNN structure as the face detector, which showed the compa-
rable or even better performance compared with other state-
of-the-art deep face detectors: Faceness [3] and cascade CNN
[2]. Our experiments show similar findings, and due to space
limits, we will not list the results here. One of our observa-
tions is that when the number of proposals drops from 500 to
100, the detection shows stable performance. Using as few as
100 proposals, 85.7% true positive rate (with 50 false positive
in test set) can still be achieved. Therefore, we use 100 pro-
posals in the final system as a tradeoff between accuracy and
speed. Our un-optimized code runs roughly at 5 fps.

We evaluate the pre-train face recognition network de-
scribed in Figure 3 over the LFW dataset [9]. Similar to
experiments in [4], we use nine training splits to select an
L2-distance threshold, and perform a simple classification us-
ing the threshold on the tenth test split, i.e., same or differ-
ent identify when L2 distance is smaller or larger than the
threshold. Our experiments give a classification accuracy of
97.61%± 0.23 when using the fixed center crop.

5.2. Evaluating the deployed robot system
The robot system described in Figure 2 was deployed into an
office setting for 1 week (5 days), where the network and clas-
sifiers were learned to identify 8 people in the office. When
people were introduced to the robot for the first time, we
asked that only one people showed up in front of the robot
at a time. Each day, people who are in the office were asked
to go to the robot for about 2-3 minutes. A total of 9,820
faces were collected in 5 days for training. For fine-tuning the
recognition network, we augmented the original face images
by applying random flip, random rotation and adding random
noise. For evaluation, five 5-minute videos was recorded at
different locations in the office where 10 identities in total
were exposed to the robot system, including the 8 people in
the training stage, 1 new person and 1 new face from a picture
frame. We manually annotated the detected faces in the test
video and computed the recognition mAP. Figure 5 shows the
mAPs with different numbers of training data collected each
day. Figure 6 gives some examples of the recognition result.
As we can see, images in our application often have motion

blur, with large variance in pose, scale, lighting, facial expres-
sion, and occlusion. Besides, due to its height, the robot tends
to look up at people, which adds difficulty to recognition. In
general, the proposed system can perform reasonably well de-
spite such challenges. The system improved its performance
each day and the final mAP reached 87.67% over the tested
10 identities after the 1 week deployment.

Figure 6 also shows some cases where the system missed
or misclassified some faces in tough situations, e.g., with dif-
ficult or extreme pose, lighting, face size. Performance needs
to be further improved for a practical system to operate well
all the time. Certain engineering work can be done to im-
prove the performance, such as by using better detection and
tracking frameworks, or by combining the ego-motion infor-
mation with detection and recognition to choose better views.
We will explore such possibilities in our future work.

Fig. 5. mAP with different numbers of data obtained after each day.

(a) Example results

(b) Challenging cases
Fig. 6. Example results. Red boxes are correctly detected and la-
beled faces. Yellow circles are missed faces. Yellow boxes are mis-
classified faces.

6. CONCLUSION

We propose an end-to-end face detection and recognition
framework based on deep CNN, by combining the RPN
based detection and the deep embedding networks. Through
sharing computation using the same convolutional layers be-
tween detection and recognition, the required computation is
largely reduced at test time. An effective training strategy is
used to generate a unified network. We also develop a prac-
tical robot system, which automatically asks for a minimum
level of human supervision when needed, without requiring
region-level face annotation. Experiments over challenging
benchmarks as well as a personalized dataset demonstrate the
effectiveness of our system.
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