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ABSTRACT

Deep neural networks (DNN) achieve very good performance

in many machine learning tasks, but are computationally very

demanding. Hence, there is a growing interest on model

reduction methods for DNN. Model reduction allows to re-

duce the number of computations needed to evaluate a trained

DNN without a significant performance degradation. In this

paper, we study layerwise reduction methods that reduce the

number of computations in each layer independently. We

consider the pruning and low-rank approximation method for

model reduction. Up to now, often a constant reduction factor

is used in all layers. In this paper, we show that a non-uniform

allocation of reduction factors to different layers can greatly

improve the performance of the reduced DNN. For this pur-

pose, we select the optimal layer reduction factors in terms

of an optimization problem. Experiments on three different

benchmark datasets demonstrate the superior performance of

our method.

Index Terms— Deep neural networks, model reduction,

pruning, low-rank approximation

1. INTRODUCTION

Today deep neural networks (DNN), though very powerful,

are limited to applications with enough computation power

and memory because evaluating a trained DNN is compu-

tationally demanding [1, 2]. As DNN is the state-of-the-art

method for many machine learning tasks [1, 2, 3, 4], there is a

growing interest in how to reduce its complexity without de-

grading the performance. This is an important step to make

DNN applicable even on mobile or embedded devices.

Model reduction means to transform a trained network

with the parameter vector θ to a reduced network with the

new parameter vector θ̃ = R(θ, αtot, {x0(n)}, {y(n)}) in such a

way that the reduced network requires less computations in

evaluation. The transform depends on the desired total reduc-

tion factor αtot, i.e. the percentage of the saved computations

for the whole network. It may also depend on a sequence

of input data {x0(n)} and optionally a sequence of reference

output data {y(n)}.

Most proposed methods work layerwise without refer-

ence, i.e. the parameter vector θ
l

of layer l is transformed to

θ̃
l
= Rl(θl, αl, {x0

(n)}) independent of the other layers, where

αl is the reduction factor of layer l [5, 6, 7].

In this paper, we consider two model reduction tech-

niques, pruning and low-rank approximation. The former

deletes some selected neurons in each layer according to

some selection strategies and reduces the number of parame-

ters [5, 6]. The latter replaces the weight matrix in each layer

by a low-rank approximation [7]. This is beneficial because

the product of the weight matrix and input vector can be split

into two matrix-vector-products with smaller matrices.

Using layerwise reduction methods, a central problem is

how to choose the reduction factors αl of individual layers,

called layer reduction factors. Most works on model reduc-

tion of DNN use an iterative approach switching between

network reduction and supervised retraining. In each itera-

tion, the reduction factor for each layer is chosen heuristi-

cally based on the activation of the neurons for a given labeled

training sequence or comparing the magnitude of the weights

against a threshold [5, 8, 9]. The iterations are stopped if

the desired total reduction factor αtot for the whole network

is reached or the network can not be reduced further. These

methods need labeled reference data and, due to the iterative

reduction and retraining, are computationally demanding.

We look at this problem from a different perspective and

study how to choose the layer reduction factors αl to satisfy

the requirement of a total reduction factor αtot without itera-

tive retraining. This problem has not been addressed in the

literature. A careful choice of αl is obviously necessary, since

sparsity and low-rank structure of the weight matrices may

change from layer to layer. This depends on the individual

layer width and also on the application at hand.

In this paper, we do not study how to do the layerwise

model reduction. We rather focus on how to choose the layer

reduction factors αl in an optimal way to get a reduced net-

work with a given total reduction factor αtot and without a sig-

nificant performance degradation. In experiments, we test our

method on networks trained on benchmark datasets MNIST,

SVHN and NORB and demonstrate the significant perfor-

mance improvement by an optimal allocation of layer reduc-

tion factors over a constant reduction factor.
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2. LAYERWISE NETWORK REDUCTION

2.1. Problem formulation

We consider the model reduction of a trained fully connected

DNN. The full DNN consists of one input layer of neurons

x
0
∈ RM0 , L− 1 layers of hidden neurons x

l
∈ RMl (1 ≤ l < L)

and one output layer of neurons x
L
∈ RML . Equivalently, the

DNN has L layers of weights or nonlinear transforms

x
l
= fl(x

l−1, θl) = Φl

(

a
l

)

, (1)

a
l
= Wlxl−1

+ b
l
, 1 ≤ l ≤ L. (2)

a
l
∈ RMl is the activation, Wl ∈ R

Ml×Ml−1 the weight ma-

trix, b
l
∈ RMl the bias vector and Φl(·) the nonlinear activa-

tion function of layer l. The parameter vector of layer l is

θ
l
∈ RMl(Ml−1+1) and contains all elements of Wl and b

l
. The

number of multiplications at layer l is Ml−1 Ml
1.

After the model reduction, the reduced network computes

x̃
l
= f̃l(x̃

l−1, θ̃l) = Φl

(

ã
l

)

(3)

ã
l
= W̃l x̃l−1

+ b̃
l
, 1 ≤ l ≤ L, (4)

where θ̃
l

is the new parameter vector of the reduced layer l.

Layerwise network reduction means that θ̃
l

is determined by

θ
l

only and not by the other layers. In this paper, when we

speak of layer l, we mostly mean the layer l of weights as

described in Eq. 1 - 4 and not a layer of neurons.

2.2. Naive pruning

The basic idea of pruning is to delete some irrelevant neurons

in each layer. Assume that we keep only M̃l from Ml neurons

in x
l
with M̃l < Ml, 0 ≤ l < L. The number of output neurons

remains unchanged M̃L = ML. In this case, x̃
l−1
∈ RM̃l−1 and

W̃l ∈ R
M̃l×M̃l−1 and Eq. 4 requires M̃l−1 M̃l multiplications

instead of Ml−1 Ml. This corresponds to a reduction factor of

αl = 1 −
M̃l−1 M̃l

Ml−1 Ml

(5)

for layer 1 ≤ l < L and

αL = 1 −
M̃L−1 ML

ML−1 ML

= 1 −
M̃L−1

ML−1

(6)

for the last layer L. The total reduction factor of the whole

network is

αtot = 1 −

∑L−1
l=1 M̃l−1 M̃l + M̃L−1 ML
∑L

l=1 Ml−1 Ml

. (7)

If we use a constant layer reduction factor α1 = ... = αL = α

in all layers, called uniform allocation of reduction factors,

1In this paper, we use the number of multiplications to quantify the com-

putational complexity and reduction factor. This means, we neglect the addi-

tion of the bias term bl and the calculation of the activation function Φl.

the same total reduction factorαtot = α yields. Note that in the

pruning case, a reduction of the number of input and output

neurons for a layer has a quadratic influence to αl because the

weight matrix Wl is shrinked in both height and width.

There are different approaches to select the neurons to be

pruned and to calculate W̃l, b̃l
from Wl, bl

. Since this is not

the main focus of this paper, we use a simple naive pruning

method to demonstrate the impact of optimum allocation of

reduction factors αl. By using a sequence of N unlabeled in-

put data {x0(n)}, we calculate the sample covariance matrices

of the input x
l−1

(n) of all L layers:

Cl−1 =
1

N

N
∑

n=1

(x
l−1

(n) − µ
l−1

)(x
l−1

(n) − µ
l−1

)T , (8)

µ
l−1

=
1

N

N
∑

n=1

x
l−1(n), 1 ≤ l ≤ L. (9)

Then, we keep these M̃l−1 neurons in x
l−1

with the largest di-

agonal elements in Cl−1. The remaining Ml−1 − M̃l−1 neurons

are deleted.

2.3. Low-rank approximation

The basic idea of low-rank approximation of Wl ∈ R
Ml×Ml−1 in

Eq. 2 is the calculation of W̃l = AlBl from Wl by a principal

component analysis (PCA) with Al ∈ RMl×kl and Bl ∈ Rkl×Ml−1 ,

kl < min(Ml−1,Ml). The matrix-vector-product Wlxl−1
in-

volving Ml−1 Ml multiplications is then split into two products

with Ml−1kl and Mlkl multiplications, respectively. The re-

duction factor in layer l is thus

αl = 1 −
(Ml−1 + Ml)kl

Ml−1 Ml

, 1 ≤ l ≤ L. (10)

The total reduction factor of the whole network is

αtot = 1 −

∑L
l=1(Ml−1 + Ml)kl
∑L

l=1 Ml−1Ml

. (11)

Again, αtot = α follows from α1 = ... = αL = α. Note that

in contrast to pruning, a reduction of the number of principal

components has only a linear impact to αl because Al and Bl

are shrinked only in one dimension.

3. OPTIMAL ALLOCATION OF LAYER

REDUCTION FACTORS

3.1. Optimization problem

The easiest way to choose αl is the uniform allocation α1 =

... = αL = α. According to the previous section, the total

reduction factor is αtot = α as well.

An optimal allocation of the layer reduction factors means

to determine α1, ..., αL for a given value of αtot such, that the

performance of the reduced DNN is optimum in some sense.
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Let ϑ = [M̃0, ..., M̃L−1]T ∈ NL and ϑ = [k1, ..., kL]T ∈ NL be

the numbers of selected neurons in x0, ..., xL−1 for the prun-

ing case and the number of selected principal components in

W1, ...,WL for the low-rank approximation, respectively. Ac-

cording to Eq. 5,6 and 10, there is an one-to-one unique re-

lationship between {αl} and ϑ. Hence, we can equivalently

optimize ϑ for a given minimum total reduction factor 0 <

αtot,min < 1.

Our basic idea is to choose ϑ such that the approxima-

tion errors induced by the model reduction are minimized in

some sense. One possibility is to minimize the squared error

||x̃
L
− x

L
||2 = || f̃ (x

0
, θ̃, ϑ)− f (x

0
, θ)||2 between the output of the

reduced and full DNN. This is, however, not practical because

it requires the calculation of the reduced DNN f̃ (x
0
, θ̃, ϑ) for

all possible values of the integer vector ϑ.

We propose a layerwise cost function

J(ϑ) =

L
∑

l=1

Jl(ϑl) (12)

to be minimized. Jl(ϑl) defines a normalized approximation

error induced by model reduction at layer l with ϑl = M̃l−1

for pruning and ϑl = kl for low rank approximation. The sum

of Jl(ϑl) over all layers is important because we applied lay-

erwise reduction methods and each Jl(ϑl) represents only the

reduction error of one layer and not that of the whole network.

3.2. Low-rank approximation

In case of low-rank approximation, Jl(ϑl) = Jl(kl) can be eas-

ily calculated from the singular value decomposition (SVD)

of the weight matrix Wl of the full network without any ad-

ditional input data. Let σ1 ≥ ... ≥ σkL
≥ 0 with Kl =

min(ML−1,ML) be the singular values of Wl in a decreasing

order. In low-rank approximation Wl is approximated by a

rank kl matrix W̃l with the same singular vectors as Wl and

the singular values σ1, ..., σKl
, 0, ..., 0. We propose

Jl(ϑl) = Jl(kl) =
||Wl − W̃l||

2
F

||W̃l||
2
F

=

∑Kl

i=kl+1
σ2

i
∑kl

i=1
σ2

i

, (13)

where || · ||F denotes the Frobenius norm.

3.3. Pruning

For the pruning method, we need a sequence of N unlabeled

input samples {x
0
(n)} to calculate {x

l−1
(n)} of all layers of the

full DNN and their corresponding sample covariance matrices

Cl−1, 1 ≤ l ≤ L as in Eq. 8. Since the reduction technique we

considered in this paper is to keep the M̃l−1 neurons of x
l−1

with the largest M̃l−1 diagonal elements of Cl−1, we propose

Jl(ϑl) = Jl(M̃l−1) =

∑Ml−1

i=M̃l−1+1
σ2

i

∑M̃l−1

i=1
σ2

i

, (14)

where σ2
1
≥ ... ≥ σ2

Ml−1
≥ 0 are the diagonal elements of Cl−1

in a decreasing order.

In Eq. 13 and 14, normalized squared reduction errors are

used since different layers have different numbers of neurons

and also different magnitudes of weights and signals. The

final optimization problem for the optimum allocation of layer

reduction factors is

min
ϑ

J(ϑ) s.t. αtot(ϑ) ≥ αtot,min. (15)

The total reduction factor αtot(ϑ) is given in Eq. 7 for pruning

and in Eq. 11 for low-rank approximation. In the former case,

αtot(ϑ) is quadratic in M̃l−1. In the latter case, αtot(ϑ) is linear

in kl.

3.4. Solving the optimization problem

Eq. 15 is an integer program and hard to solve. Fig. 1 shows

the cost function J(ϑ) and the feasible region {ϑ|αtot(ϑ) ≥

αtot,min} in case of pruning of a network with L = 2, M0 = 10,

M1 = 5, M2 = 5 and αtot,min = 0.5. The blue dots mark the

integer values of M̃0 and M̃1 outside the feasible region and

the green dots those inside.

0 2 4 6 8

k1

0

1

2

3

4

k
2

boundary of 
feasible region

continuous optimum

M
~

0

M
~

1

J(�)_

projected integer 
solution

Fig. 1: The optimization problem in Eq. 15 for a network

with L = 2, M0 = 10 and M1 = M2 = 5.

For simplicity, we relax the integer program to a contin-

uous one. We use linear interpolation of J(ϑ) at the integer

grid to obtain J(ϑ) for ϑ ∈ RL. Its contour plot is shown in

Fig. 1. Then, we solve this constrained and non-convex opti-

mization by using the gradient-free evolutionary optimization

algorithm (from the pyswarm package [10]) and project the

continuous optimum to the nearest integer neighbour, see Fig.

1.

4. EXPERIMENTS

We evaluate our method on the MNIST, SVHN and NORB

datasets [11, 12, 13] for different pruning factors αtot. All

experiments are done using Theano [14] and Keras [15]. The

first two tasks are digit recognition and the last task deals with

image classification. We use a full DNN with L = 6 layers of

weights for all 3 tasks. The 5 hidden layers of neurons have

the same number of 2500,2000,1500,1000 and 500 hidden
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neurons for all 3 tasks, while the width of the layers changes

for each task depending on the number of input features and

output classes (M0 = 784/3072/9216 and ML = 10/10/5 for

MNIST/SVHN/NORB). For all layers except for the last one,

we used the rectifier linear unit as the activation function of

the hidden layers and a softmax output layer. We trained the

networks using rmsprop as optimizer using a learning rate of

0.003.

The full networks are trained on subsets of the datasets.

Then, they are reduced with two different reduction methods,

pruning and low-rank approximation as described in section

2, and two different methods for allocation of layer reduction

factors, the uniform and the optimal one from section 3. The

accuracy of the three networks after model reduction is eval-

uated by a holdout test set.
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low-rank factorizat ion

0.5 0.6 0.7 0.8 0.9
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0.6
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l

pruning

layer 1

layer 2

layer 3

layer 4

layer 5

layer 6

Fig. 2: Optimum layer reduction factors vs total reduction

factor for a MNIST network with L = 6 layers.

Fig. 2 shows the optimal layer reduction factors αl for the

MNIST network for a varying total reduction factor αtot. Ex-

cept for the first layer l = 1, obviously, the top layers have

much larger reduction factors, indicating a higher redundancy

in the top layers. This is not surprising because the top layers

have larger numbers of neurons. The output layer is not re-

duced at all in case of low-rank approximation. This is mean-

ingfull, since the weight matrix of the last layer already has

low-rank (KL = 10/10/5 for MNIST/SVHN/NORB) and ap-

proximation with fewer singular vectors will result in large

errors.

The accuracy of the reduced DNNs is shown in Fig. 3.

In case of pruning, the optimum allocation of αl greatly im-

proves the performance of the reduced networks over a uni-

form reduction factor for the same total reduction factor αtot.

Motivated by the results in Fig. 2, that in case of low-rank

approximation all αl, 1 ≤ l ≤ L − 1 converge to a uniform

factor α1 = ... = αL−1 = αtot, we choose the uniform layer

reduction factors for low-rank approximation α1, ...αL−1 =
α(
∑L

l=1 Ml−1 Ml)−ML−1 ML
∑L−1

l=1 Ml−1 Ml

and αL = 0, i.e. the last layer is not re-

duced. In this case, there is almost no accuracy difference for

uniform and optimal selection of αl, since uniform selection

is already close to the optimum for large αtot. Another advan-

tage of low-rank approximation is that it does not require any

additional input data. The knowledge of the weight matrices

Wl from the training is sufficient.
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opt im ally factorized
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Fig. 3: Accuracy of the reduced MNIST, SVHN and NORB

network vs the total reduction factor αtot using the uniform

and optimal layer reduction factors.

On the other hand, the naive pruning used in this paper is

heuristic and far from optimum. It keeps only those neurons

with high power (diagonal elements of Cl−1) and does not take

their correlation (off-diagonal elements in Cl−1) into account.

If some input neurons in a layer are highly correlated, part of

them can be pruned even if they have high powers because we

will be able to recover the output of this layer by using the re-

maining input neurons and some adapted weights and biases.

In other words, there is still a big room for improvement if we

use more advanced pruning methods instead of naive pruning.

This is currently under study.

5. CONCLUSION

We studied how to allocate layer reduction factors for the

model reduction of a trained fully connected DNN. We

showed that there is a performance difference between uni-

form and non-uniform allocation. In particular, we presented

a novel method for optimal allocation of layer reduction

factors in combination with pruning and low-rank approxi-

mation. Experiments on 3 benchmark datasets validated the

superior performance of this method. We conclude that it is

mandatory to carefully choose the layer reduction factors.
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