
ON RANDOM WEIGHTS FOR TEXTURE GENERATION IN ONE LAYER CNNS

Mihir Mongia,1 Kundan Kumar,2 Akram Erraqabi,3 Yoshua Bengio3

1Stan f ord University, 2IIT Kanpur, 3Montreal Institute f or Learning Algorithms
MMONGIA@STANFORD.EDU, KUNDAN@IIT K.AC.IN, ERRAQABI@GMAIL.COM, BENGIOY @IRO.UMONT REAL.CA

Abstract— Recent work in the literature has shown experimentally
that one can use the lower layers of a trained convolutional neural
network (CNN) to model natural textures. More interestingly, it has
also been experimentally shown that only one layer with random filters
can also model textures although with less variability. In this paper
we ask the question as to why one layer CNNs with random filters
are so effective in generating textures? We theoretically show that one
layer convolutional architectures (without a non-linearity) paired with
the an energy function used in previous literature, can in fact preserve
and modulate frequency coefficients in a manner so that random
weights and pretrained weights will generate the same type of images.
Based on the results of this analysis we question whether similar
properties hold in the case where one uses one convolution layer with
a non-linearity. We show that in the case of ReLu non-linearity there
are situations where only one input will give the minimum possible
energy whereas in the case of no nonlinearity, there are always infinite
solutions that will give the minimum possible energy. Thus we can
show that in certain situations adding a ReLu non-linearity generates
less variable images.

Key Words - Texture Generation, CNN, Random Weights

I. INTRODUCTION

With the recent advancements in deep learning, many image pro-
cessing tasks that were once thought impossible are now possible.
One such task is that of generating completely random textures that
visually look similar to a given sample texture. Recently Gatys et
al. [1] experimentally showed that by utilizing a specific energy
function that uses the first few layers of a pretrained CNN, natural
textures can be effectively generated. Later Champandard [2] used a
different energy function and random weights to generate textures.
He et al. [3] used the same method as in Gatys et al. [1] with
random weights, to generate nice textures. Around the same time,
Ustyuzhaninov et al. [4] experimentally showed that less variable
natural textures can be generated using just one layer of a CNN with
random filters along with the same energy function. Although these
methods work quite well there is no theoretical analysis why these
methods (in particular the choice of energy functions and also use
of random weights) would be helpful for texture generation even
in the most basic settings such as in [4].

This leads us to ask a natural question. What theoretical proper-
ties lead to the fact that we can generate random textures just using
a one layer CNN with random filters?

In section 3 with a slight adjustment to the one layer CNN
architecture, we show rigorously why random weights in one layer
CNNs without a nonlinearity, can be used to generate random tex-
tures with the same performance as with pre-trained weights, while
also drawing connections to previous work in texture generation. In
section 4, we show how the behavior of generated images changes
when one adds a ReLu non-linearity.We show that in the case of
a ReLu non-linearity there are often cases where there is only one
solution that gives the minimum energy (the input itself), whereas
in the case with no nonlinearity there are infinite inputs that give
the minimum energy.

II. PRELIMINARIES

We now review a subset of the models used by Ustyuzhaninov
et al. [4] that we later analyze theoretically. In particular the subset
corresponds to the models which use random weights.

The model employs a single-layer CNN with standard rectified
linear units(ReLus) and convolutions with stride one, no bias and
padding (f-1)/2 where f is the filter-size (f is always an odd number).
This choice of padding will ensure that the spatial dimension of the
output is the same as the spatial dimension of the input. In addition,
363 filters of dimensions 11 × 11 × 3 (filter width, filter height,
number of input channels) are randomly generated from a uniform
distribution according to [5].

For an original texture image x, a matrix Gx is formed,

Gx
i j =

m=M

∑
m=1

FimFjm (1)

where Fi j corresponds to the output of the ith filter (after the
nonlinearity) at location j.

To generate new textures corresponding to an original image x,
an energy function E is developed,

E(y) = ||Gx−Gy ||F (2)

An image y is initialized randomly to values between 0 and 1.
Then y is changed according to gradient descent until y is a local
minimum with respect to the energy function. Note that the smallest
this energy can be is zero.

III. THEORY FOR USING RANDOM WEIGHTS

In this section we consider the same model as above with two
modifications. We consider a model where there is no non-linearity.
We also use circular convolution rather than valid convolution as
done in Saxe et al. [6]. We study the behavior of the algorithm
without a ReLu non-linearity to gain insight into what is happening
or not happening in the non-linear case. In addition, if the random
weights in the model of Ustyuzhaninov et al. [4] were to be positive,
then having a ReLu nonlinearity would be equivalent to using no
non-linearity. This is because an image signal comes in values
between 0 and 255. Thus the convolution of positive filters and
an image signal will be positive. We use circular convolution, as
in [6], rather than valid convolution because we can more easily
get a theoretical analysis. Intuitively doing circular convolution in
a texture image is not too different than doing valid convolution
because the statistics are usually uniform across texture images.

An important fact to note is that the output of a circular
convolution of an original image and filter Fi can be written as
a matrix multiplication where the matrix is a function of the filter
Fi. These matrices are called block circulant with circulant blocks
(BCCB) matrices. These matrices can be diagonalized in the form

Fi =UDiU† (3)

2207978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

where U is the discrete Fourier basis in two dimensions [7].Thus
the output of convolving an image x with a filter Fi is

Fi(x) =UDiU†x (4)

where x has been appropriately vectorized, and an entry of Gx can
be re-expressed in the following way,

Gx
i j = xTUD†

i U†UD jU†x = xTUD†
i D jU†x = xTUDi jU†x

= ∑
k
|λ x

k |
2Dk

i j
(5)

where λ x
k is the is the kth Fourier coefficient corresponding to the

kth basis vector in U such that

x = ∑
k

λ
x
k U(:,k) (6)

Ideally we would like to generate all the images y such that
Gx = Gy. This would correspond to an energy of zero. From the
equations above we can see that finding a y such that Energy(y) = 0
would come down to solving a system of linear equations. To be
clear the system of equations would be

G11 = ∑
k
|λ y

k |
2Dk

11, G12 = ∑
k
|λ y

k |
2Dk

12, G13 = ∑
k
|λ y

k |
2Dk

13

. . . Gnn = ∑
k
|λ y

k |
2Dk

nn
(7)

In matrix form the linear system of equations would look like

g = M|λ y|2 (8)

or

Gx
1,1

Gx
1,2
...

Gx
2,1
...

Gx
n,n

=

D1
1,1 D2

1,1 D3
1,1 . . . Dn

1,1
D1

1,2 D2
1,2 D3

1,2 . . . Dn
1,2

...
...

... . . .
...

D1
2,1 D2

2,1 D3
2,1 . . . Dn

2,1
...

...
... . . .

...
D1

n,n D2
n,n D3

n,n . . . Dn
n,n

|λ y|2 (9)

First we note that this system of equations is solving for the
magnitude of the fourier coefficients of a particular signal. Thus this
system puts no constraints on the phase of each fourier coefficient
and thus, even in the case of M being full rank, there are always
infinite solutions to equation 9.

In the case that the system of equations is not full rank, then
the choice of filters clearly effects what type of solutions will give
energy zero. This is because the vector |λ y|2 is unique up to the
rows of M. This has some nice implications. Let’s define

di j = diag(D†
i D j) (10)

Since we have constraints of the form

Gii = dT
i j |λ y|2 (11)

it implies the possible solutions of |λ y|2 must lie on the n− 1
dimensional space where equation 11 holds.Thus |λ y|2 lies within
an intersection of roughly n2/2, n− 1 dimensional spaces that
have the same projection on to the frequency domain of the
filters as does |λ x|. Notice if this low rank system were due
to random weights then the possible solutions would lie within
a different intersection of n− 1 dimensional spaces. Thus using

random weights would yield distinctly different images than would
using pre-trained weights in the case where the number of filters is
not large enough to create a full rank matrix M.

Notice that even if this system of equations is full rank, the
solution to the linear system only gives us the magnitude of each
fourier coefficient. Also notice that the number of equations is
approximately n2/2. Thus if we have a relatively small number
random filters compared to the dimension of x, the matrix M can
become full rank. If M is full rank and M is created either by
random weights or pretrained weights, the solutions y that yield
energy zero are characterized by images for which the fourier
coefficient magnitudes are the same as the fourier coefficient
magnitudes of the image x. This is because we already know the
fourier coefficients of the image x already satisfy the equations from
7 and thus |λ y

k | = |λ
y
k | for any k. Thus in the case that there are

enough random weights and pre-trained weights , the solution y to
the system of equations is no different than the solutions y to the
system of equations generated by pretrained weights.

In Figure 1 we show textures generated by simply randomizing
phase of fourier coefficients. one can notice that the ridges happen
in completely different places. One issue with this however is that
one can see vertical and horizontal lines appearing in the generated
textures. This is due to the fact that the FFT assumes images are
periodic and in fact may suggest the need for nonlinearities.

IV. UNIQUE SOLUTIONS IN THE RELU CASE WITH CIRCULAR

CONVOLUTION

In the case where there is no nonlinearity, we show that in all
cases there are infinite solutions that will yield energy equal to zero
(The results above also hold for 1-D vector signals by simply letting
U be discrete fourier transform for one dimensional signals). Since
in [4] a ReLU is used, the results above beg the question, does the
same behavior hold in the case where there is a ReLU non-linearity.
We show below that for almost all 1-D vector signals(as opposed
to 2-D image signals) if one samples enough random filters that
there is only one solution that yields energy zero.

First we set some notation. For an x ∈ Rn, let C(x) denote the
circulant matrix corresponding to x. In other words the first row of
C(x) is x. The second row is x circularly shifted by one and so on.
Let the set Pi(x) be all the vectors v such that in the matrix-vector
multiplication C(x)v has only the ith element greater than zero.

Theorem 1: Let c1, c2, ..., cn ∈ Rn be linearly independent
vectors. Then the intersection of the half planes decided by these
n vectors has non-zero volume.

Proof: Denote the half plane restrictions by

Cx < 0 (12)

where the rows of C correspond to the vectors setting the half
planes. C is full rank because the rows are linearly independent.
Now let

qk =C−1ek (13)

where ek are the canonical basis vectors of a euclidean vector space.
Notice that as a result the qk will be linearly independent and thus
form a basis for Rn because there are n such vectors. Thus any x
of the form

x = α1q1 +α2q2 + ...αnqn (14)

where αi > 0, satisfies the half plane restrictions. Since the region
of possible x is a convex cone constructed from basis vectors that
span the whole euclidean space, the region of vectors x that satisfy
the half-plane restrictions has non-zero volume.

2208

Fig. 1. This figure shows how randomly assigning phase to fourier
coefficients can generate random textures. The top image is the original
black and white texture. The bottom two images are generated textures.

Corollary: As long as C(x) is full rank, Pi(x) is a set that has nonzero
volume in Rn for any i. In other words, if you were to uniformly
sample vectors from the unit ball, there is a finite probability that
these vectors would be in the set Pi(x) for any i.

Theorem 2: For any Gx there are n vectors y such that Gx = Gy.
In particular, any y that is just a circularly shifted version of x
will have a gram matrix Gy = Gx. This holds for any kind of non-
linearity used in the network.

Proof: Consider F i to be the circulant matrix corresponding
to i-th convolution filter. Then, output feature map corresponding
to i-th convolution filter for input vector X can be written as F iX .
We’ll use h(.) to represent the non-linearity that can be applied to
any scalar or element-wise to any vector/matrix. Using this notation,

we can say that

GX
i j = (h(F iX))>(h(F jX)) =

n

∑
k=1

h(< (F i
k,:,X >).h(< F j

k,:,X >)

(15)

. where F i
k,: is the kth row of F i.

Now consider an operator Cs such that, Cs(x) circularly
shifts x by one e.g. if x = [x1,x2,x3, ...,xn], then Cs(x) =
[xn,x1,x2,x3, ...,xn−1]. Here, n is the length of vector x, < a,b > is
the dot product between vectors a and b. Then, F i being circulant
implies that Cs(F i

k,:)=F i
k+1,:∀k∈ [1,n−1] and Cs(F i

n,:)=F i
1,:. Also,

it is straightforward to see < Cs(a),Cs(b) >=< a,b > ∀a,b ∈ Rn.
Hence, we have

< F i
k+1,:,Cs(X)>=<Cs(F i

k,:),Cs(X)>=< F i
k,:,X >

=⇒ h(< F i
k+1,:,Cs(X)>) = h(<Cs(F i

k,:),Cs(X)>) ∀k ∈ [1,n−1]
(16)

and

< F i
1,:,Cs(X)>=< F i

n,:,X >

=⇒ h(< F i
k+1,:,Cs(X)>) = h(<Cs(F i

k,:),Cs(X)>)
(17)

This is true for all i in range [1,N] where N is the number of filters.
Hence, from eq. 15 and eq. 16, 17, we have

GCs(X)
i j = h(< F i

1,:,Cs(X)>)∗h(< F j
1,:,Cs(X)>)

+
n

∑
k=2

h(< F i
k,:,Cs(X)>)∗h(< F j

k,:,Cs(X)>)

= h(< F i
n,:,X >)∗h(< F j

n,:,X >)

+
n−1

∑
k=1

h(< F i
k,:,X >)∗h(< F j

k,:,X >) = GX
i j

(18)

Hence, GX = GCs(X) = GCs(Cs(X))..= G(Csm(X)). Hence, we get at
least as many solutions as the possible circulations of x.

Theorem 3: Using the same notation set before Theorem 1,
suppose we have n sets of filters. Let each set S j contain n filters
(or equivalently vectors) each of which ∈ Pi(x) for a unique i. In
others words, if v,z ∈ S j , then if v ∈ Pi(x) for some i then z 6∈ Pi(x).
Denote the set SPi as the set of vectors ∈ (∪n

j=1S j)∩Pi(x). Let the
vectors in each SPi be linearly independent. Under these conditions,
if Gx =Gy for some vector y, then y is equal to x or some circularly
shifted version of x.

Proof: We denote the ReLU activation as R(x). Let’s consider
the set of n2 filters in ∪n

j=1S j. For a given x, we want to characterize
the solutions y of the equation Gy = Gx. This equation is actually
equivalent to a system of equations that correspond to the Gram
matrix components

∀i, j ∈ [1, · · · ,K] Gy
i j = Gx

i j

We can rewrite Gx
i j = R(F ix)>R(F jx). Let’s consider a diagonal

n×n block of Gx which corresponds to the filters coming from Si
for some i. Without loss of generality suppose we have ordered the
entries of G such that the first diagonal block corresponds to filters
in S1, the second diagonal block corresponds to the filters in S2 and
so on. Without loss of generality let’s consider the first block. We
know that the corresponding filters in S1 are defined such that only
one component of Fq

S1
x is positive, i.e ∀q ‖R(Fq

S1
x)‖0 = 1.Here q

is indexing the n filters in S1. Due to the conditions assumed in the
theorem (S j contains n filters each of which ∈ Pi(x) for a unique i),
we also have that R(Fq1

S1
x)>R(Fq2

S1
x) = GS1

q1q2 ∗δq1q2 where GS1
q1q2

corresponds to the appropriate entry in the first diagonal block of

2209

Gx. Note that this implies the first diagonal block of Gx is diagonal
because of the δq1q2 which is only non-zero when q1 = q2.

Given that we want Gx = Gy, it implies the first diagonal n×n
block of Gy must also be diagonal. This implies that for any Fq

S1 ∈
S1, ‖R(Fq

S1
y)‖0 = 1 because if it were greater than 1, then the

n× n block of Gy will have non diagonal non-zero elements. If
‖R(Fq

S1
y)‖0 = 0, then of course the n×n block would be the zero

matrix.
This means that the only equations that characterize the solutions

are those that correspond to the diagonal terms of the first block of
Gx. These equations are ‖R(Fq

S1y)‖2
2 =GS1

qq. Since ‖R(Fq
S1y)‖0 = 1,

there are n possible equations Fq
S1[k, :]y=

√
GS1

qq that could generate
consistent vectors y, where k corresponds to some row in the matrix
(filter) Fq

S1.
Performing the same reasoning using the other sets of filters S j ,

we end up with n possible equations for each filter that characterize

a solution y. Fq
S j
[k, :]y =

√
GS j

qq.
Note that the non-diagonal blocks of Gx happen to be the inner

product of the output of filters coming from Si and S j for some j
and i. These blocks contain also one non zero value per row for the
same reason that make the diagonal blocks diagonal matrices. The
value of knowing for which pairs of Fq1

Si
and Fq2

S j
produce a non-

zero value is that it lets us know which matrices are aligned. In other
words if the entry in Gx corresponding to Fq1

Si
and Sq2

S j
is greater

than zero, then if Fq2
S j

[k, :]y =
√

GS j
q2q2, then Fq1

Si
[k, :]y =

√
GSi

q1q1.
Notice we used the same index k. Suppose we have aligned the
above 2 filters. Then we can align those with n− 2 other filters
coming from other S j, by looking in the appropriate non diagonal
blocks of Gx.

Since we have aligned the filters appropriately, we now have n
possible system of equations since we can choose n values of k. We
note under the conditions specified in Theorem 3, that these system
of equations is full rank, and can thus only have one solution. One
can also see that each of these system of equations just gives a
circularly shifted solution of x. This phenomenon corresponds to
theorem 2.

Theorem 4: Suppose we generate nk random filters from the
infinity norm 1 ball and suppose C(X) is full rank. As k approaches
infinity, the probability that there is unique solution to Gx = Gy (up
to a circular shift) approaches one.

Proof: Let δ1...δn be the probability that a random vector
lands in P1(x)...Pn(x) respectively. We know δ1...δn is greater than
zero because of theorem 1. Let k = c∗n where c is some rational
number. Let counti be the number of times we get filters in Pi(x)
in the ith set of k draws.

P(counti < n) = P(counti < (
1

cδi
)cnδi)

= P(counti < (1− cδi−1
cδi

)cnδi)

< exp(−cδi−1
2cδi

cδi−1
cδi

cδin)

(19)

This follows from classical chernoff bound results. Notice the term
cδi−1

cδi
approaches 1 as c approaches infinity.

Thus

P(count1 > n,count2 > n, . . .countn > n)

=
n

∏
i=1

(1− exp(−cδi−1
2cδi

cδi−1
cδi

cδin))
(20)

which approaches 1 as c approaches infinity. In addition, given that
we have sampled more than n vectors that are in Pi(x) for some
i, if we choose n of those vectors they are going to be linearly
independent with probability one since the set of linearly dependent
vectors in Pi(x) has measure zero.Thus as c approaches infinity we
have the conditions noted in theorem 3 with probability one. One
can find the sets S1,S2, . . .Sn through exhaustive search of the Gram
Matrix and then execute the proof for theorem 3 and come to the
conclusion that if Gx = Gy for some vector y, then y is equal to x
or some circularly shifted version of x.

V. CONNECTIONS TO PREVIOUS WORK

Galerne et al. [8] show that an algorithm called Random Phase
Noise (RPN) is effective at generating realistic textures of a certain
class. In the most basic version of their algorithm, the authors
take texture like images and generate new textures simply by
randomizing the phase of the fourier coefficients.As long as there
are enough filters to create a full rank system, the slightly modified
model in section 3 is mathematically equivalent to randomizing
phase. Thus we expect that even our modified model(with no
nonlinearity) should produce good random textures, which is in
fact what we observe in Figure 1. The authors note the same
horizontal and vertical line artifacts with this algorithm as we do
in our experiments and thus do some extra image processing to get
textures that do not have line artifacts.

VI. DISCUSSION

We have shown rigorously that in a slightly simplified model
compared to that of [4] (with circular convolution and no ReLU
nonlinearity), there is no need for pretrained weights. To be precise,
if the number of weights is small, then the images generated with
pretrained weights and random weights will be different from each
other. However, as the number of weights increases, random or
pretrained weights make no difference in the images generated. We
show that the images generated from a large number of weights are
just modified versions of the original image. Frequency coefficient
magnitudes are preserved, whereas frequency coefficient phases are
randomized.

Using the lack of a nonlinearity as a starting point and the fact
that in [4] a ReLU nonlinearity is used, we seek to see if having
a ReLU would generate a set of signals with similar properties as
in the no ReLu case. We show rigorously in the one-dimensional
case that there are conditions under which the only signals x, that
can be generated with the same gram matrix as the original signal
x∗ are circularly shifted versions of x∗. This is distinctly different
from the linear case where there would be an infinite number of
solutions.

We view these results as giving a theoretical starting point to
understand the contribution of nonlinearities, random weights, as
well as the gram matrix energy function in texture generation. To
be clear though, there is room for future work. Since the energy
function is non-convex with respect to input images, input images
may be caught in a local minima. We have no way to get a handle on
what type of images these local minima might produce. Secondly
we have not shown in full generality what happens in the Relu
case. We have shown just sufficient conditions under which the
solutions to a Relu model and linear model differ greatly. Thirdly
our analysis does not yet account for multiple layers. On the other
hand, the analysis presented above may provide guiding intuition
for multiple layers since the output of each layer is just a linear
convolution and ReLu of the previous layer.

2210

REFERENCES

[1] Leon A. Gatys, Alexander S. Ecker and Matthias Bethge. Texture Syn-
thesis Using Convolutional Neural Networks, 2015; arXiv:1505.07376.

[2] Champandard, Alex. ”Extreme Style Machines: Using Random Neural
Networks To Generate Textures”. nucl.ai. N.p., 2016. Web. 10 Aug.
2016.

[3] Kun He, Yan Wang and John Hopcroft. A Powerful Generative Model
Using Random Weights for the Deep Image Representation, 2016;
arXiv:1606.04801.

[4] Ivan Ustyuzhaninov, Wieland Brendel, Leon A. Gatys and Matthias
Bethge. Texture Synthesis Using Shallow Convolutional Networks
with Random Filters, 2016; arXiv:1606.00021.

[5] Glorot, Xavier, and Yoshua Bengio. ”Understanding the difficulty of
training deep feedforward neural networks.” In Aistats, vol. 9, pp. 249-
256. 2010.

[6] Saxe, Andrew, Pang W. Koh, Zhenghao Chen, Maneesh Bhand, Bipin
Suresh, and Andrew Y. Ng. ”On random weights and unsupervised
feature learning.” In Proceedings of the 28th international conference
on machine learning (ICML-11), pp. 1089-1096. 2011.

[7] Hansen, Per Christian, James G. Nagy, and Dianne P. O’leary. Deblur-
ring images: matrices, spectra, and filtering. Vol. 3. Siam, 2006.

[8] Galerne, Bruno, Yann Gousseau, and Jean-Michel Morel. ”Random
phase textures: Theory and synthesis.” IEEE Transactions on image
processing 20, no. 1 (2011): 257-267.

[9] Horn, Roger A., and Charles R. Johnson. Matrix analysis. Cambridge
university press, 2012.

2211

