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ABSTRACT

In this paper, we consider the problem of falls risk prediction
in elderly adults using smartphone-based inertial gait mea-
surements. We begin by collecting a parallel data set from
a pressure sensitive walkway and smartphones. The walk-
way data is used to calculate the falls risk ground truth using
well-established biomechanical norms. The smartphone data
and falls risk labels are then used to train and evaluate both
the one-class support vector machine (OC-SVM) and the sup-
port vector data description (SVDD) novelty detectors. In our
evaluation, we find the SVDD has an average F1 score, used
as a measure of classifier performance by equally weighting
precision and recall, of 76% for females and 79% for males
compared to 79% for a universal model. These results demon-
strate the potential for predicting falls risk from smartphone
data using novelty detection.

Index Terms— Falls Risk, smartphone, novelty detec-
tion, one-class svm, support vector data description.

1. INTRODUCTION

As the elderly population increases, the prediction of falls
risk has become an important research area since falling is
one of the leading causes of injury and death among people
over the age of 65 [1]. An individual’s risk factor is deter-
mined by external and age-related factors, including but not
limited to home safety, medications, muscle weakness, and
gait deficits. External risk factors can be measured using a
variety of assessments [1] that account for fall and medical
history, prescription/non-prescription medications, and home
safety. Physiological risk factors, such as gait deficits, can
be measured using foot pressure sensors, motion capture sys-
tems, and inertial sensors. Measurements from these sen-
sors can be incorporated into biomechanical models, and ma-
chine learning systems can be used to predict falls risk [2].
Micro Electro-Mechanical Systems (MEMS) based Inertial
Measurement Units (IMUs) are attractive for measuring gait
because of their low cost and demonstrated effectiveness in

falls prediction [2]. MEMs based IMUs can be found in most
smartphones, making them compelling research device.

Previous studies using inertial gait data and supervised
learning techniques have relied on labeled training data based
on an individual’s falls history [2], i.e. ”faller” and ”non-
faller.” Three problems arise with the faller/non-faller classi-
fier approach. First, a large number of examples, equally rep-
resenting both classes, is needed to train and evaluate the clas-
sifier. Balanced data sets can be costly and time-consuming
to collect, especially for the faller class. Second, if an indi-
vidual has fallen, their gait pattern may reflect injuries related
to the fall, but not necessarily changes leading up to the fall.
Furthermore, if an individual has fallen and undergone reha-
bilitation, their gait may not reveal patterns indicative of falls
risk. Finally, we do not believe a smooth trajectory in feature
space exists between high-risk non-fallers and general fallers.
The lack of a smooth trajectory implies a classifier trained on
faller/non-faller data may not accurately predict a falls risk.

On the other hand, novelty detection can be used to con-
struct predictive models using data from a single class. This
approach has three advantages. First, a novelty detector does
not require a balanced dataset. Therefore, a reduction in data
collection costs can be achieved since low falls risk individu-
als are more accessible. Second, as opposed to a binary clas-
sifier, we do not have to extensively monitor an individual’s
gait before and after a falls event, which would be required
to understand the trajectory in feature space. Third, novelty
detection is more practical for the ultimate goal of continuous
monitoring of gait using smartphones since abnormal patterns
indicating a risk of falling can be detected and flagged.

Novelty detectors can be categorized as probabilistic-,
distance-, or domain-based [3]. Probabilistic methods use
parametric/non-parametric methods to estimate a probabil-
ity density function (pdf), which is then used to define the
threshold between normal/anomalous data points. Distance
methods measure the similarity between two data points.
Both probabilistic and distance methods, work well on large
training sets of low-dimension [3]. Domain methods con-
struct a decision boundary following the data distribution.
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These methods work well on high-dimensional data and do
not rely on the training data distribution [3]. Domain methods
include the one class support vector machine (OC-SVM) and
support vector data description (SVDD).

Previous studies have applied novelty detection to the
analysis of gait pathology [4, 5]. In [4], Principal Compo-
nent Analysis (PCA) was used as a measure of how close a
given gait pattern was to normal. The technique was applied
to measurements from 71 individuals with cerebral palsy.
Twenty-four individuals did not exhibit gait pathology and
were used to build a model representing normal gait. Using
the PCA technique, the authors were able to demonstrate their
method for clinical applications. In [5], the authors collected
spatial and temporal measurements from 596 healthy subjects
using a pressure sensitive platform. Multiple linear regression
was then used to determine the deviation from normality.

In this work, we investigate the application of novelty de-
tection for predicting falls risk from smartphone based inertial
data. We describe the collection of a parallel dataset using
both smartphones and a pressure sensitivity walkway. The
data from the walkway is used to provide a “ground-truth” la-
bel for falls risk using biomechanical-based norms [6–8]. Us-
ing features extracted from the inertial data and the falls risk
labels, we train and evaluate the OC-SVM and SVDD novelty
detectors. This paper is organized as follows. In Section 2, we
review the OC-SVM and SVDD. In Section 3, we discuss the
collection of gait data, calculation of falls risk, data process-
ing and feature extraction. In Section 4, we describe model
training, hyperparameter optimization, and the F1 score. and
in Section 5 we provide simulation results. Finally, in Sec-
tion 6 we give our conclusions.

2. SVM-BASED NOVELTY DETECTION

Both one-class (novelty) and two-class (binary) classifica-
tion problems assign previously unseen data points to one
of two predefined classes. Training data is represented as
an n-dimensional feature vector, x = [x0, x1, . . . , xn−1]T

and appropriately labeled as y = +1 for the positive class
or y = −1 for the negative class. In the two-class prob-
lem, labeled training data is first used to construct a decision
boundary in feature space for the SVM [9]. Then depending
on which side of the decision boundary the unseen data point
lies on, the class is estimated. In the one-class problem, when
the classifier is used for novelty detection, only data points
from one class are used in training. When used for anomaly
detection, unlabeled data points from both classes are used
and examples from the positive, negative class correspond to
the anomalous, normal data points, respectively.

As described in [10], the OC-SVM uses a hyperplane to
separate data points from the feature space’s origin according
to a maximum margin constraint. The method returns a binary
decision function, f(x) ∈ {+1,−1}, which captures regions
containing the majority of data points. A decision, ŷ = −1

corresponds to the region containing a majority of data points
and ŷ = +1 corresponds to other region(s).

Construction of f is achieved by solving the constrained,
quadratic programming problem

minimize
w,ζi,ρ

‖w‖2 +
1

νn

∑
i

ζi − ρ

subject to w · Φ(xi) ≥ ρ− ζi
(1)

where the parameter 0 < ν ≤ 1 establishes a lower bound on
the number of training samples used as support vectors and an
upper bound on the fraction of training examples considered
outliers, ζi ≥ 0 are the slack variables, xi are the support vec-
tors, Φ is a non-linear mapping from feature space to a higher
dimension space, and w and ρ characterize the hyperplane.

The decision function is then

f(x′) = sgn

[∑
i

αiK(xi,x
′)− ρ

]
(2)

where x′ is the test example, αi are Lagrange multipliers, and
K is the kernel function defined as K(x,x′) = Φ(x)TΦ(x′).

As described in [11], the SVDD uses a hypersphere to
form a boundary around data points in the feature space. The
hypersphere is described by its center point, a and radius,
R > 0. The volume of the hypersphere is minimized such that
all training data, xi, are contained within the hypersphere. To
allow for outliers in the data, slack variables allow the dis-
tance from xi to a to be greater than R. The hypersphere
parameters are obtained by solving a constrained, quadratic
programming problem

minimize
R,a

R2 + C
∑
i

ζi

subject to ‖xi − a‖2 ≤ R2

(3)

where C is a penalty parameter, xi are support vectors, and
‖·‖ is the Euclidian distance measure. A new datapoint, x′

is evaluated as anomalous (outside the target class) if it lies
outside the hypersphere, ‖a− x′‖ > R.

3. GAIT DATA

3.1. Data Collection

Gait data was collected by The Electronic Caregiver Co. (ECG),
Mobile Fall-Risk Assessment Unit from two sensor plat-
forms: a pressure sensitive walkway and two Appler iPhoner

6 devices. The walkway measured planter force and pressure
while both smartphones, using the ECG GaitLogger app [12],
made inertial gait measurements. The two smartphones were
attached to the left and right hip using a gait belt and holster
clip. The smartphones were oriented such that the long edge
of the device was vertical. During each trial, a participant
walked down the walkway (outbound), turned around, and
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returned. For the outbound pass, both platforms collected
data in parallel and only the smartphones collected data for
the return pass. In total, smartphone data was collected for 54
participants. Thirty-five of the participants were female and
19 of the participants were male. Due to a technical issue, one
smartphone for three participants was unusable. In total, we
collected smartphone-based inertial gait measurements from
190 walking segments. We also collected 54 sets of walkway
biomechanical measurements.

3.2. Falls Risk Ground Truth from Walkway Data

The walkway measurements were used to calculate a falls risk
ratio for each participant. An initial assessment was used to
determine a measure of gait stability (central tendency) and
instability (variance). A two step process was used to classify
individuals with increased falls risk. First, the gait data was
analyzed using factor analysis to ensure the variables were
consistent with previous reports [6, 7], i.e. gait velocity, ca-
dence and stride length load on the “pace factor” (Factor 1)
and both percent time in double leg support and in swing load
on a “rhythm factor” (Factor 2). Second, a falls risk ratio [8]
was calculated using the percentage of change in both Factor
1 (cadence, stride length and gait velocity) and Factor 2 (per-
cent time in double leg support and percent time in swing).
Due to cross-correlations in the gait variables, a participant
was considered to have an elevated risk, i.e. y = +1 if the
risk ratio was greater than 8% on two of the three variables
loading on Factor 1 and greater than 8% on both variables
loading on Factor 2. Of the 54 participants, 19 were labeled
as having a falls risk and 35 labeled as having a low falls risk.
Thirteen female participants were labeled as having a falls
risk and 22 were labeled as having a low falls risk. Of the 19
male participants, 13 were labeled as having a low falls risk
and 6 were labeled as having a falls risk. Overall our dataset
contains 120 gait segment examples labeled low falls risk and
70 gait examples labeled as falls risk.

3.3. Feature Extraction

An extensive analysis of features used in falls risk classifica-
tion can be found in [2]. From this study, the authors deter-
mined that the most discriminating features are computed us-
ing the spectrum of the acceleration signals. In our research,
we use features 11-13 and 19-33 from Table I in [13]. Prior
to feature extration, all signals were manually segmented us-
ing a semi-automated MATLABr program, additional de-
tails can be found in [12]. Feature extraction is performed
for the x-, y-, and z-axis acceleration signals. For each sig-
nal, the magnitude spectrum, |F (ω)|, is calculated using a
2048-point Fast Fourier Transform (FFT). After the transfor-
mation, the fundamental frequency ω0, is estimated as the
frequency whose six harmonics maximize the cost function,
J(ω0) =

∑6
k=1 |F (jkω0)| [13]. Since human gait is quasi-

periodic, it is not expected that the harmonics are exact multi-

ples of the fundamental thus true harmonics falling close to a
peak are replaced by the frequency of the closest peaks. Har-
monics which fall in a valley are not replaced. Figure 1 shows
the magnitude spectra for the x-, y-, and z-axis acceleration
signals. The circular markers denote the six harmonics.
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Fig. 1. Magnitude spectrum for (a) x-, (b) y-, and (c) z-axis
acceleration signals. Circular markers denote the six harmon-
ics. Features are extracted from the acceleration harmonics
according to [13].

Once the spectral peaks corresponding to the fundamen-
tal and its harmonics are found, features for each acceleration
signal are extracted according to [2, 12, 13]. In total, seven
features are extracted for each accelerometer axis and con-
catenated together to form a 21-D feature vector. Features 1,
8, and 15 are the fundamental frequencies for the x-, y-, and
z-acceleration signals, respectively. Features 2-5, 9-12, 16-19
are the ratios of the area under the first harmonic (fundamen-
tal, second, third, and fourth) to the sum of the area under the
first six harmonics for the x-, y-, z-axis, respectively. Features
6, 13, 20 are based on the ratio of the sum of the area under
the first six harmonics to the sum of the remaining area un-
der the spectrum for the x-, y-, z-axis, respectively. Features
7, 14, 21 are based on the ratio of the sum of the area under
the even harmonics to the sum of the area under the odd har-
monics for the x-, y-, and z-acceleration signals, respectively.
The area under the harmonics is calculated by integrating the
magnitude spectrum in a window of±0.15 Hz around the fre-
quencey of interest [13].
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4. MODEL BUILDING

4.1. Training and Hyperparameter Optimization

The OC-SVM and SVDD novelty detectors were trained us-
ing only examples labeled as having a falls risk. Training
with the falls risk class was motivated by [14] where it is sug-
gested that classification results can be improved by learn-
ing only the minority class. The training set was constructed
by randomly selecting 80% of the falls risk examples. The
model was tested using examples from both classes, where
the remaining 20% of the falls risk examples were used to
construct part of the testing set. The remaining part was con-
structed such that the same percentage of examples with low
falls risk was the same as the complete dataset. The low falls
risk examples were also selected at random.

The OC-SVM and SVDD methods each have one hyper-
parameter, ν and C, which can be optimized. Depending on
the SVM kernel, additional hyperparameters may also need
to be optimized, i.e. Radial Basis Function (RBF) kernel’s γ
parameter which controls the width of the kernel. Hyperpa-
rameter optimization was performed using a grid search over
the hyperparameter space. To improve robustness and avoid
over-fitting, Monte-Carlo cross-validation was used. [15].
The cross-validation procedure employed the same training
and testing technique described above.

4.2. Evaluation Metric

Novelty detection problems use unbalanced datasets, where
the number of negative examples can far exceed the number of
positive examples. For this reason, the use of classifier accu-
racy can be misleading, since the classifier can easily achieve
a high level of accuracy by classifying all observations as the
dominant class. Instead, a more appropriate evaluation metric
is the F1 score [16] defined as

F1 = 2× Precision× Recall
Precision + Recall

(4)

where

Precision =
tp

tp + fp
and Recall =

tp
tp + fn

(5)

and tp, fp, and fn are the number of true positives, false pos-
itives, and false negatives, respectively. Since both Precision
and Recall are equally weighted, a good novelty detector
should maximize both measures. A detector that performs
moderately well on both measures is preferred over one that
performs well on only a single measure; a novelty detector
which classifies randomly has F1 = 0.5.

5. SIMULATION RESULTS

Simulations were performed using MATLABr and the LIB-
SVM library [17] which includes OC-SVM and SVDD

implementations. For this study, both gender-dependent
(male/female) and independent (universal) models were con-
sidered. The use of gender-dependent models was motivated
by the work reported in [5], which noted differences in body
mass and ratios between the body length segments can greatly
effect models of normal gait. The model building process de-
scribed in Section 4.1 was performed independently for each
model; each SVM type was evaluated using the RBF and
linear kernels.

Results for the OC-SVM and SVDD after hyperparam-
eter optimization are presented in Table 1. For all models
we found that the performance was similar. The SVDD with
a linear kernel has an F1 scores of 79.27% for males and
the SVDD with a RBF kernel has an F1 score of 76.23%
for females. Whereas the best universal model obtains a
score of 79.07% for the SVDD with a RBF kernel. These
results suggest a novelty detector can be used to predict falls
risk from smartphone-based inertial gait measurements. The
smartphone’s ease of use, data collection costs, and ubiquity
offers the potential for continuous falls risk prediction and
monitoring which is not possible with other sensor platforms.

Table 1. Best F1 scores. SVDD out performs the OC-SVM
for all models

Model SVM Kernel F̄1

Universal OC-SVM Linear 0.7705
Universal OC-SVM RBF 0.7705
Universal SVDD Linear 0.7734
Universal SVDD RBF 0.7907
Female OC-SVM Linear 0.7619
Female OC-SVM RBF 0.7619
Female SVDD Linear 0.7540
Female SVDD RBF 0.7623
Male OC-SVM Linear 0.7907
Male OC-SVM RBF 0.7907
Male SVDD Linear 0.7927
Male SVDD RBF 0.7911

6. CONCLUSION

Using a limited dataset, this research has successfully demon-
strated the prediction of falls risk from smartphone inertial
gait measurements using novelty detection. In this study,
spatial-temporal gait measurements from a pressure sensitive
walkway provided ground truth labels for a participants’ falls
risk. Using these labels we were able to asses the performance
of the OC-SVM and the SVDD novelty detectors. The results
indicate that for all models the SVDD provides the best F1

scores for all models. As the number of participates in the
dataset increases, it is expected that the results presented in
this paper will improve.
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