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ABSTRACT

Infrastructure surveillance is an important requirement for many
companies. With the advancement of technology, drones can now
provide an efficient tool for such applications. A possible future sce-
nario is the automated surveillance of railroads. Whereas numerous
algorithms that provide railroad detection exist, they have mainly
focused either on satellite images or for small, low altitude drones
which are unsuitable for our particular scenario. In this paper we
propose a railroad detection algorithm tailored for large, high alti-
tude enduring drones. More specifically, we use Hough Transform
to detect lines and perform a line clustering in the Rho and Theta
space. A score model is also proposed in order to identify the rail-
road. We test our method on several sequences supplied by Airbus
Defense & Space and show our algorithm to provide a detection rate
of 93.23% in average.

Index Terms— drone surveillance, enduring airborne systems,
railroad detection, hough transform

1. INTRODUCTION

With the advancement of technology, new opportunities arise in the
field of video surveillance. As drones are no longer limited to mili-
tary applications and are even available as entertainment devices that
can be controlled through modern mobile phones, automatic video
surveillance of infrastructures is a real possibility. This is also the
goal of the SURICATE project (SUrveillance de Reseaux et dInfras-
truCtures par des systemes AeroporTes Endurants), which proposes
the use of Unmanned Aerial Vehicles (UAV) for the surveillance of
infrastructures such as railroads or electrical lines. This work is cen-
tered around these ideas and tackles a specific scenario: the surveil-
lance of railroads using large high altitude enduring drones. To the
best of our knowledge, this problem has not been investigated yet.

Railroad and road detection is a known problem in image pro-
cessing and a large number of methods exists that propose solutions
for various usage scenarios. A first use case scenario is that of roads
and railroads detection in satellite images. Radu Stoica et al. pro-
pose an algorithm based on a Monte Carlo dynamics for finite point
processes [1]. Mohammadzadeh et al. use a few samples from road
surface and apply a particle swarm optimization to a fuzzy-based
mean calculation system in order to obtain road mean values in each
band of high resolution satellite color images. However, this type of
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scenarios are inherently different from detecting railroads or roads
in images or videos acquired by drones. Our scenario requires a less
complex approach. More specifically, it is desired to be as close as
possible to real time usage, as the algorithm will be used for tracking
and detection purposes, either for tracking the railroad with the on-
board camera or providing additional data that can be used for drone
orientation and flight control.

A second use case scenario which has been investigated is that
of railroads detection when using small low altitude drones. The
algorithm in [2] uses feature extraction in order to detect railroads in
pictures. A large number of methods for generating features exist,
some of the more popular include Histogram of Gradients (HOG) [3]
or Scale-invariant feature transform (SIFT) [4]and [5]. However,
object detection usually requires the use of learning algorithms such
as Support Vector Machines (SVM) [6].

Pali et al. [7] propose to use Probabilistic Hough Transformation
(PHT) [8] to determine the vanishing point of the railroad. They use
this method to guide a small drone along a railroad. However, in our
scenario the vanishing point cannot be determined as the images are
acquired from a high altitude. Furthermore, the PHT may provide
worse results than HT as only a subset of edge points are considered
in order to improve computational time.

In this paper, we propose a Hough Transform (HT) based algo-
rithm to detect railroads when using high altitude drones. We per-
form a clustering with respect to Rho and Theta in the HT. The clus-
ter selection is performed using a scoring technique that takes into
account the geometrical properties of the railroad and the length of
the detected lines. We test our method using several test video se-
quences acquired by Airbus Defense & Space in the framework of
SURICATE project. The rest of the paper is organized as follows:
Section 2 describes the proposed algorithm, in Section 3 we show
and discuss our results and Section 4 concludes the paper.

2. METHOD DESCRIPTION

In this section,, we describe our proposed algorithm. As previously
discussed we aim at providing a robust and fast railway detection
method that can be used on board UAVs for tracking and orientation
purposes during infrastructure surveillance. In order to achieve this
we use a sequential algorithm where each block’s output is the input
of the next. The whole algorithm can also be divided into two larger
blocks: a line detection block and a line selection one.

In Figure 1, we depict the general scheme of the proposed al-
gorithm. Our method can be divided into 7 steps, starting from the
input image and finalizing with the detected lines coordinates. The
first step in the algorithm is the edge detection. There are numerous
algorithms that can be used for edge detection. Some of the more
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Fig. 1. Algorithm general scheme. Dotted lines indicate input data.

popular ones, that were proven over time are: Laplace, Sobel and
Canny methods [9]. Unlike the first two, Canny method is less sus-
ceptible to noise and for this reason it is preferred. However, the
selection of σ and Thresh parameters plays an important role and
should be carefully balanced. Too much smoothing may lead to a
loss of useful information, while no smoothing will lead to noise in
the edge detection step.

The next step of the algorithm is the Hough Transform (HT) [10]
[11]. This is a well known method for detecting straight lines in
images and can work even with noisy data. Several variants of the
transform exist such as those described by Leavers in [12] or [13].
Fernandes and Oliveira propose in [14] a real time implementation
for HT through an improved voting scheme. Frame rates of up to
52.63 are reported.

The next two steps in the our pipeline identify the lines in the
image. Firstly, a selection of peaks is performed in the transform
space and then lines are identified for each of the pairs of (ρ, θ). The
MaxGap parameter is used to set the maximum accepted discontinu-
ity, in the binary edge image, when identifying a line. Once a set of
lines is identified with corresponding start/end points and associated
(ρ, θ) pairs, the list is passed to the next block which performs the

line selection that best characterizes a railroad in the given context
(UAV infrastructure surveillance).

The second part of our method is comprised of three blocks.
Two clustering blocks for θ and ρ and a scoring and cluster selection
block. In what follows we will describe each block in detail and
discuss the particularities and issues that can be encountered.

A first thing to notice is that the clustering is performed in two
steps as opposed to running a clustering algorithm, for all (ρ, θ)
pairs, such as k-means [15]. The reason behind this is that each
of the two parameters is bound by a specific condition. Performing
this analysis separately allows us to identify the clusters efficiently
by searching for a maximum with respect to the frequency of lines
at each θ and ρ interval.

In the case of θ we know that railroads are parallel so lines be-
longing to a railroad should have the same angle. Of course, due to
the nature of the HT, several concurrent lines can be identified for
each rail instead of two parallel lines for each rail. This is due to
peaks in the HT transform that are not always isolated. These effects
are caused by the quality of the image, the precision of the edge de-
tection method or simply by the resolution with which the HT was
computed. Therefore, a small variation should be allowed for lines
that belong to a railroad. This is denoted in Figure 1 by ∆θ. Iden-
tifying the θ line clusters is now simply a matter of searching for
θ intervals with a high frequency of lines in a histogram computed
over a quantization of the θ search domain (θlimits). The minimum
quantization step in this case is given by θres and the maximum step
should not be higher than ∆θ. Once a cluster is identified the lines
are suppressed and the procedure is repeated. The number of clus-
ters should be limited manually and also automatically in order to
avoid relatively small clusters with respect to the frequency of the
peak intervals. A good form for this threshold is:

F (θ
Ck
min, θ

Ck
max) > τ · F (θC1

min, θ
C1
max) (1)

where, (θ
Ck
min, θ

Ck
max) is the θ interval of the cluster, F returns the

number of lines in the interval, C1 is the first identified cluster which
has the highest line frequency and τ is a constant between 0 and 1.

Once a set of θ clusters is identified we can proceed to separat-
ing each one into multiple clusters with respect to ρ. The procedure
is similar to the θ case and differs in the selection of ∆ρ. As rails
are equally spaced, ∆ρ can be empirically determined for a given
scenario or estimated using the drone camera parameters and alti-
tude. In a similar manner with θ clustering, a stop criterion can be
expressed as:

F (ρ
Ck
min, ρ

Ck
max) > τ · F (ρC1

min, ρ
C1
max) (2)

The final step of the pipeline is an analysis of the clusters and
a selection of the best matching ones. The first thing required is
to define what makes a cluster of lines most likely to belong to a
railroad. For this purpose we propose computing a score for each
cluster depending on the length of the lines and the variation of θ and
ρwithin each one. We will separate this score into three intermediary
scores: Sθ , Sρ and Sll (line lengths).

The first score Sθ should indicate the similarity of the lines an-
gles within the cluster and also take into account the number of lines
within the cluster. Even though, the angles are limited to an inter-
val less variation should indicate a better match. Let us consider the
following formulation for a single line θ score:

s
Ck
θ (j) =

∆θ +
N∑
i=1

|θCk (i)− θCk (j)|

N
(3)
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where, k denotes the cluster, N is the total number of lines within
the cluster and || is the absolute value. ∆θ assures a non-zero score.
This is an indication of how similar the angles are within the cluster
(high value indicates increased angle variation). The Sθ score for
cluster Ck can now be expressed as:

S
Ck
θ =

√√√√√√√√
N ·

N∑
i=1

llCk (i)

N∑
i=1

s
Ck
θ (i) · llCk (i)

(4)

where, llCk (i) is the length of the line i in cluster Ck. This value
can be interpreted as the geometric mean between the number of
lines and the inverse of the sCk

θ weighted average with the length
of the lines. Longer lines should be given more weight and a high
number of lines increase the reliability of the detection.

A similar set of operations can be performed for ρ values in order
to obtain SCk

ρ . Similarly to θ the lines should be relatively close to
each other. We can define sCk

ρ (j):

sCk
ρ (j) =

∆ρ+
N∑
i=1

|ρCk (i)− ρCk (j)|

N
(5)

and SCk
ρ :

SCk
ρ =

√√√√√√√√
N ·

N∑
i=1

llCk (i)

N∑
i=1

s
Ck
ρ (i) · llCk (i)

(6)

The final component of the score should reflect the lengths of
the lines in each cluster. Considering that all clusters contain a high
number of small lines (this aspect will be further discussed in the
experimental section) we are interested in evaluating only the longer
lines as they will provide more information about the structure of
the rail. We first select all lines with a length higher than the average
line length of the cluster as:

L(llCk ) = {i|llCk (i) > mean(llCk )} (7)

The line length score SCk
ll can be defined as:

S
Ck
ll =

√√√√ ∑
i∈L(llCk )

llCk (i)

M
·N (8)

where M is the number of elements in L(llCk ). Finally, score can
be written as the geometric average of SCk

ll , SCk
ρ and SCk

θ .

S =
3

√
S
Ck
θ · S

Ck
ρ · SCk

ll (9)

The cluster with the highest score is then selected as the railroad.

3. EXPERIMENTAL RESULTS

In this section we present our experimental results and discuss the
methodology of the tests and the selection of parameters.

3.1. Testing data

As no benchmarks and video databases currently exist for our par-
ticular scenario, we use a set of video sequences acquired by Air-
bus Defence & Space in the framework of the SURICATE project.
The video sequences were acquired in raw YUV format and con-
tain recordings of railroads located in France, captured with large,
high altitude, enduring UAVs. We extracted several sequences from
the drone recordings, from various locations, with different content
including roads or other geometrical structures similar to railroads.
Each sequence has 300 frames and a resolution of 1920× 1080.

(a) Sequence 1 (b) Sequence 2

(c) Sequence 3 (d) Sequence 4

(e) Sequence 5 (f) Sequence 6

Fig. 2. Test sequences representative frames. Each frame shows the
type of content present in each of the test sequences.

3.2. Testing Methodology

For testing purposes, we implement our algorithm in Matlab. How-
ever, in the future an on-board implementation will be done in order
to perform real time testing and calibration of parameters. The de-
tection algorithm is applied on each frame. We consider the line
detected if the line cluster is located over the railroad and has the
correct angle. If the railroad is not entirely detected (e.g. the de-
tected lines cover only a part of the railroad) we consider this case
also as a positive detection, as having the θ and ρ intervals will pro-
vide a good indication of the railroad position and relative angle to
the drone. All other cases when the detected lines fail to indicate the
proper angle of the rail or are located over different structures in the
image are considered false detections. In addition, we will show a
step by step run of the algorithm and the intermediary results.

3.3. Parameter calibration

In our tests, we used the same parameters for all test sequences. Al-
though, in the future an automatic calibration is preferred, as some
of the parameters are strongly linked with the drone’s camera and
flight path. A large increase in speed can be obtained by reducing
the search domain for θ. In normal conditions the UAV will have a
predefined flight path in close proximity to the railroad. The relative
angle of the railroad can be determined with respect to the aircraft by

2189



using the GPS and geographical information. This information can
be used to drastically reduce the search angle limits (θlimits) and
increase the speed and reliability of the detection. However, in our
experiments we used the maximum angle span from -90 to 90 de-
grees, relative to the image x-axis. The HT resolution for θ and ρ is
also dependent on the zoom. Once the railroad is identified the cam-
era may be zoomed in and our algorithm will indicate the relative
position of the railroad in the image which can be used for tracking.
The resolution in this case may be lowered as the railroad will have
a larger size relative to the image size. Also, based on the degree of
zoom in, camera parameters and drone altitude the ∆ρ can be easily
computed as railroads have constant widths. In Table 1 we report the
parameters used in our tests.

Parameter value Parameter value
θres 0.4 ∆θ 3
ρres 1 ∆ρ 50
θlimits [-90, 89.6] σ 1.4
Nr peaks 150 Thresh 0.15

Table 1. Algorithm parameters used in our tests.

3.4. Results

In Table 2, we report our detection rate. As can be seen we obtain a
very good detection rate for the railroads. In Figure 3, we depict an

Sequence Det. rate(%) Sequence Det. rate( %)
Seq. 1 99.6 Seq. 4 72,6
Seq. 2 96.6 Seq. 5 96.3
Seq. 3 94.3 Seq. 6 100

Table 2. Algorithm parameters used in our tests.

example of the algorithm’s behavior for frame 40 of Sequence 2. The
detected clusters of lines are depicted, as well as the edge detection
step. In Figure 3(c) we show all the detected lines. The reported
score (S) for the 5 clusters is: 9.0932, 5.9146, 5.9701, 4.6062 and
3.6431. As expected the first cluster which also contains the railroad
has the highest score and is selected as the detected railroad.

4. CONCLUSIONS

In this paper we presented a railroad detection algorithm for surveil-
lance of infrastructure using large, high altitude, enduring drones.
The method can be used for railroad tracking with the UAV’s camera
and also for navigational purposes in the case of GPS or connection
failure with the drone. We tested the proposed technique using a
set of sequences supplied by Airbus, Defense & Space, acquired in
the context of the SURICATE project which proposes infrastructure
surveillance using UAVs. We were able to obtain a detection rate of
93.23 in average over all tested sequences. The algorithm was not
yet integrated with the drone’s on-board systems, however, this is a
future work direction. Furthermore, additional improvements can be
made by creating a parameter adjustment system with respect to the
drone camera and flight information data. Further improvements can
be made by taking into account the temporal aspect and estimating
the position of the railroad in future frames thus eliminating possible
erroneous detections.

(a) Original image (b) Edge detection

(c) Detected lines (d) Line cluster 1

(e) Line cluster 2 (f) Line cluster 3

(g) Line cluster 4 (h) Line cluster 5

Fig. 3. An example of the detected lines and clustering process for
frame 40 of Sequence 2. Red indicates the detected lines in the image
for Figures 3(c)to 3(h). Figure 3(b) shows the detected edges with.
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Fig. 4. The line scatter plot in Rho/Theta space 4(a) and the lines
histograms with respect to Theta 4(b) and Rho 4(c).
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