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ABSTRACT 

 

 Automatic speech recognition is now playing an important 

role in volume control and adjustment of modern smart 

speakers. According to the recognition results by using the 

advanced deep neural network technology, this paper 

proposes an efficient processing system for automatic 

volume control (AVC) and limiter. The theoretical analyses, 

subjective and objective testing results show that the 

proposed processing system can offer a significant 

improvement for speech recognition performance during 

audio playback and improvement for audio playback 

performance in smart speakers. Driven by input data and 

audio contents, the proposed AVC is able to adaptively learn 

and track an effective signal level at the speed corresponding 

to the width of transient sound; the adaptation is frozen in 

the case of silence and noise periods. The proposed limiter 

measures the peaks and can guarantee that no peak will go 

over the predetermined peak threshold so as to avoid 

clipping and harmonic distortions. 

 

Index Terms — Automatic volume control, limiter, 

wake-up word recognition, audio performance, clipping 

 

1. INTRODUCTION 

 

Automatic speech recognition (ASR) has found a very 

powerful use in volume control and adjustment of the 

modern smart speakers and hearing devices where such a 

device can generate an output audio signal with the desired 

sound pressure level (SPL) through applying a properly 

stable gain to the audio signal. These processing techniques 

are referred to as audio content based AVC and limiter 

(LIM). When users lower (or increase) the volume gain to 

less (or larger) than 0 dB, an AVC device can output the 

audio with the desired decreased (or increased) SPL. The 

applied actual gain could be different from the volume gain 

when volume gain is larger than 0 dB so as to avoid audible 

distortions due to clipping of peak signals. 

As a matter of fact, it does not matter if users increase 

or decrease the volume gain; the desirable AVC processing 

should generate the output audio signals without audible 

volume fluctuations during users’ adjustment of the volume 

or users’ issuing of voice volume commands. 

In addition, in some applications such as acoustic echo 

cancellation (AEC) system, the software solutions of AVC 

and LIM are very important due to the following three 

reasons: (1). AEC has full knowledge of the playback signal 

so that changing the volume gain does not result in an echo 

path change, (2). it is easy to configure the mapping between 

user volume changes and gain application, (3). AVC and 

AEC can be easily and tightly integrated so as to simplify 

the playback architecture and improve AEC performance. 

    More importantly, an AVC system should be not only 

responsible for controlling the volume for the device, but 

also responsible for limiting any signals that might exceed 0 

dB digital full scale, i.e. preventing audio from clipping or 

saturation, which is one major cause of audible distortion. 

This suggests that a desirable AVC system needs to contain 

both AVC processing and limiter processing. 

Although some AVC and LIM related systems have 

been proposed [1-6], these existing systems have significant 

drawbacks mainly because of generating either breathing, 

pumping, or distortion.  Moreover, as shown in Section 3, 

the design of these existing systems is independent from the 

connected AEC processing and from the training for the 

speech recognition, which in turn cannot maximize the ASR 

performance during audio playback. The above problems 

prevent these existing AVC systems from practical use and 

being accepted by the users. It is the goal for this paper to 

propose a new AVC and LIM processing system that 

overcomes the above drawbacks so as to achieve the 

optimum processing performance. The proposed AVC and 

LIM system has been trained by wake-up word model on 

deep neural network (DNN) machine learning (ML) 

platform. 

    The rest of this paper is organized into the following 

three sections.  In Section 2, we will present the proposed 

AVC system with emphasis on its audio content deep 

learning feature and open-loop processing mode. By using 

various testing results, Section 3 mainly shows that the 

proposed system can improve ASR keyword spotting (a.k.a. 

the wakeword or wake-up word) performance during audio 

playback, and can provide the users with a more natural 

listening experience and balanced sonic experience without 

noticeable volume fluctuations when users adjust the 

volume-knob or volume-button. Section 4 will make some 

conclusions and also make some further discussions. 
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2. THE PROPOSED AVC AND LIM SYSTEM 

 

As mentioned in the previous section, the processing system 

consists of the AVC and LIM processing components.  From 

an audio signal flow point of view, the AVC part is placed 

before the LIM. The LIM part should serve as the last step 

of the entire processing system so as to prevent output audio 

from clipping. However, in the AEC system, the output of 

LIM is sent to the AEC as the AEC reference signal. 

 

2.1 The Proposed AVC Processing Algorithm 

 

The proposed data-driven open-loop AVC algorithm with 

deep learning feature is shown as in Figure 1. This system 

mainly consists of six parts, i.e., signal content event and 

silence detection (i.e., tuned by deep learning), look-ahead 

buffering, time constant determination (i.e., tracking speed 

determination by data-driven), signal level estimation, frame 

gain estimation and learning, and final gain smoother. 

 

 
 

Figure 1 The Proposed Data-Driven Open-Loop AVC Alg. 

 

In Figure 1, the block of “Look-ahead Buffer” is a 

circular buffer which stores a block of previous consecutive 

audio samples. The block of “time constant determination” 

(i.e., tracking speed determination driven by the related 

audio data) is to learn and obtain the appropriate attack and 

release times for different types of audio content so as to 

eliminate the audible artifacts. The principal feature of this 

processing block is to estimate the duration of transient 

sound by using the block of audio samples in the look-ahead 

buffer. The look-ahead buffer is about 35 ms. If the 

estimated duration is very short (e.g., less than 16 ms), then 

fast time constants (such as, 3 ms as the attack time and 30 

ms as the release time) will be used for the “Signal Level 

Estimation” block, otherwise, the slow time constants (such 

as, 10 ms as the attack time and 100 ms as the release time) 

will be used for the “Signal Level Estimation” block.  A 

more robust result can be obtained by using more layers and 

parameters. 

The “Audio Signal Event and Silence Detection” block 

in Figure 1 is based on signal-to-noise ratio (SNR) and 

consists of 4 blocks, i.e., Frame Energy, Envelope 

Estimation, Floor Estimation, and SNR-based Comparison. 

The “Frame Energy” block is implemented as follows. 
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where N is the frame length in number of audio samples. The 

x(n, i) is the i-th audio sample in the n-th frame. Therefore, 

x(n, 0), x(n, 1), ⋯, x(n, N-1) are the block of audio signal in 

the n-th frame. The “Envelope Estimation” block is 

implemented by the following learning rule. 
)2())1()(()1()( −−+−= nEnGnEnE β  

where β is a smoothing factor between 0.0 and 1.0. The 

“Floor Estimation” block is implemented according to the 

following learning rule: 
)3())1()(()1()( −−+−= nFnEnFnF λ  

where λ is a smoothing factor between 0.0 and 1.0. The 

Comparison block is implemented as 
If ))(*()( nFnE µ> , then K(n) = True. 

Otherwise, K(n) =False                      (4) 

The parameter µ  is a SNR threshold which is an adjustable 

constant. The variable K(n) represents audio event flag. 

The “Signal Level Estimation” block of Figure 1 is 

implemented by a fast-attack and slow-release learning filter, 

that is, if the audio event flag K(n) is false, then 

)5()1()( −= nSnS  

otherwise, 

    )6())1()(()1()( −−+−= nSnGnSnS ξ  

where if )1()( −> nSnG , then 
aηξ = ; otherwise, 

rηξ = . 

The parameters ηa and ηr are related to the attack and release 

time constants, respectively. They are determined by the 

processing block of “time constant determination” described 

above so that the attack and release time constants can match 

with the audio contents based on training with DNN ML 

platform. 

The “Frame Gain Estimation” block of Figure 1 is 

implemented as follow. 

      If (S(n) * V(n)) > γ, then 
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      otherwise, )7()()( nVnp =  

The parameter γ in Eq. (7) is a threshold which is an 

adjustable constant. The variable V(n) is the volume gain 

adjusted by users. 

The “Gain Smoother” block in Figure 1 is used to 

reduce the variation of the gain. The final gain is 

)8()1(*)1()(*)( −−+= ngnpng αα  

where the factor α has the value  between 0.0 and 1.0. 

Multiplying the delayed block of input signals (i.e., the 

audio samples in the look-ahead buffer) by the obtained gain 

g(n) in a way of sample-by-sample results in the output level 

of Figure 1 being well controlled smoothly. 
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It should be mentioned that wake-up word model 

training and statistic metrics are calculated for each of the 

above features. That means that each feature is trained on a 

machine learning model with large amounts of data. The 

statistical measures (such as mean, standard deviation, 

confidence level, etc.) are calculated for each feature model. 

The feature model with high confidence level (such as 95%) 

is then used in the proposed AVC system. 

 

2.2 The Proposed LIM Algorithm 

 

The proposed LIM algorithm creates a gain controlled signal 

shown in Figure 2 on the basis of the peak value of the input 

audio signal. The audio signal is physically delayed by an 

amount of time (i.e., look-ahead time). Once the control 

signal is ready to implement level adjustment, the audio is 

then sent ahead to the control element at the exact moment 

that the control signal arrives so as to make the adjustment. 

The proposed LIM not only meets the requirement of 

clipping-free and very low latency but also can be used to 

help any other audio processing, such as volume control, 

automatic gain control, 3D audio enhancement, and AEC, to 

prevent audio from clipping. 

Figure 2 depicts the LIM gain curve corresponding to 

the three states if linear interpolation approach is adopted for 

both look-ahead state and release state. 

 
Figure 2 LIM Gain Curve for Linear Interpolation Approach 

 

3. EVALUATIONS 

 

In this section, we will present evaluation results and testing 

analyses of the proposed system in terms of speech 

recognition performance and audio quality. 

 

3.1 Wake-up Word Recognition Performance 

 

Test results are shown in Figure 3 through Figure 6, where 

the vertical axis is the “Correct Rate of Wake-up Word 

Detection”, the horizontal axis is the “Playback Volume”. 

More green bars represent better wake-up word detection 

performance. Figures 3 and 4 are for the case of 3 feet 

distance between near-end talker and the device-under-test, 

Figures 5 and 6 are for 6 feet distance. Obviously, the 

proposed AVC and LIM system has improved both the AEC 

performance and the wake-up word recognition rate. 

 
Figure 3. Correct Rate of Wake-up Word Detection versus 

Playback Volume from Traditional AVC and LIM (3ft). 

 
Figure 4. Correct Rate of Wake-up Word Detection versus 

Playback Volume from the Proposed AVC and LIM (3ft) 
 

At 3 feet, wake-up word detection of traditional AVC 

and LIM approach drops to 76% at volume 44, then to 0% at 

volume 45 and greater. For the proposed AVC and LIM 

approach, wake-up word detection drops to 38% at volume 

51, then to 0% at volume 53 and greater. 

 
Figure 5. Correct Rate of Wake-up Word Detection versus 

Playback Volume from Traditional AVC and LIM (6ft) 
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Figure 6. Correct Rate of Wake-up Word Detection versus 

Playback Volume from the Proposed AVC and LIM (6ft) 

 

For the case  of 6 feet, wake-up word detection of 

traditional AVC and LIM approach drops to 30% at volume 

38, then to 0% at volume 40 and greater. For the proposed 

AVC and LIM approach, wake-up word detection drops to 

78% at volume 45, then to 0% at volume 48 and greater. 

 

3.2 Audio Performance 

 

A representative example of breathing artifacts of traditional 

AVC and LIM is shown in the highlighted tail in Figure 8, 

while the highlighted tails in raw audio (Figure 7) and our 

proposed AVC and LIM output (Figure 9) are smoothly 

decayed without audible breathing artifacts. Also, Figure 9 

shows more dynamics than Figure 8. Therefore, the 

proposed AVC and LIM can provide users with a more 

natural listening experience and balanced sonic experience 

without audible volume fluctuations during user’s adjusting 

volume-knob, volume-button, volume-ring, voice UI volume 

commands, or GUI volume commands. 

 

 
Figure 7. Input Audio Waveform 

 

 
Figure 8. Output Waveform Processed by Traditional AVC 

and Limiter for 24 dB Input Volume 

 

 
Figure 9. Output Waveform Processed by our Proposed 

AVC and Limiter for 24 dB Input Volume 

 

4. SUMMARY 

 

As we pointed out in Section 1, traditional AVC and LIM 

systems are not of data-driven working principles where 

tracking signal level is at a constant speed. The design of 

these traditional AVC and LIM ones is independent of the 

AEC system and also independent of training for the speech 

recognition, which results in significant drawbacks. 

This paper presents a new AVC and LIM system on the 

basis of audio content deep learning and data-driven features 

in an open-loop processing mode. Also, the proposed system 

performs the wake-up word model training and statistic 

metrics calculations for each audio feature in a more 

efficient way. More importantly, the proposed limiter 

processing provides clipping-free output and is of very low 

latency. The proposed AVC and LIM system has been 

efficiently implemented in a hardware computing platform 

and extensively evaluated in both real-time acoustical 

objective testing and subjective listening tests.  Due to its 

simplicity in computational complexity, the MIPS 

requirement incurred by the proposed system is also very 

small. All of the above shows that the proposed system can 

serve as a very efficient AVC and limiter processing tool for 

many audio/voice related applications and devices. 
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