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ABSTRACT

In this paper, we propose to extract robust video descriptor
by training deep neural network to automatically capture the
intrinsic visual characteristics of digital video. More specif-
ically, we first train a conditional generative model to cap-
ture the spatio-temporal correlations among visual contents
and represent them as an intermediate descriptor. A non-
linear encoder, with the functions of dimension reduction and
error correcting, is then trained to learn a compressed yet
more robust representation of the intermediate descriptor. The
cascade of the conditional generative model and the encoder
constitutes the building block of the deep network for learn-
ing video descriptor. As a post-processing component, the
top layers of the network are trained to optimize the robust-
ness and discriminative capability of the output descriptor.
Experimental results on benchmark databases confirm that
the descriptor learned by deep neural network shows excel-
lent robustness against photometric, geometric, temporal and
combined distortions, and it can attain an F1 score of 0.982
in content identification, which is much higher than hand-
engineered descriptors.

Index Terms— Video content identification, Video fin-
gerprinting, Video hashing, Deep neural network.

1. INTRODUCTION

The upsurge of content sharing web sites during the past few
years has resulted in a rapid growth of digital video, and video
is dominating the Internet traffic. In spite of the abundance of
video resource, without effective content identification tech-
nique, we may not able to see an increased accessibility of
video information. Video content identification, which aims
at searching the exact copies and transformed versions of a
specific piece of video content, is the enabling technique for
video indexing, retrieval, tracing, etc. In particular, as one of
the most effective alternatives to digital watermarking, con-
tent identification plays a fundamental role in digital right
management, without of which copyright-compliant content
sharing may remain a vision. Moreover, some novel applica-
tions of video content identification are being explored by the
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multimedia industry, hoping to prompt user experience or fos-
ter more value-added services. A central problem in content
identification is to seek a concise description of visual con-
tents, and a good video descriptor should have the following
properties:

• Robust: Video descriptor should be insensitive to video
processing operations and intentional manipulations.

• Discriminative: The descriptors extracted from visually
irrelevant videos should exhibit distinct difference.

• Compact: For the ease of storage and database search-
ing, video descriptor should have the least amount of
redundancy.

• Computationally efficient: Video descriptor should be
easy-to-compute.

The process of computing video descriptor is coined as
video fingerprinting or video hashing in the literature [1]. The
most straightforward approach for generating video descrip-
tor is to concatenate the descriptors independently extracted
from representative frames. However, directly extending im-
age descriptors, such as statistics [2], gradient of intensities
[3] and chromatic correlation [4], to video may suffer from
high redundancy and the sensitivity to temporal distortions. A
more effective approach for generating video descriptor is to
characterize both the spatial and temporal variations of visual
contents. For example, some video descriptors are generated
by encoding the intensity differences between spatially and
temporally nearby blocks [5] and the trajectory of key points
along the time axis [6]. Moreover, three-dimensional trans-
form [7], tensor decomposition [8] and optical flow [9], were
also explored to extract spatio-temporal visual features. Sys-
tematic reviews on video descriptors can be found in [1] and
[10].

Most existing video fingerprinting algorithms are manu-
ally designed. However, making an informative and compact
representation of the rich visual contents of video requires
tremendous expert knowledge. Moreover, it is very difficult,
if not impossible, for hand-engineered descriptors to capture
abstract and high-level visual characteristics. Recently, learn-
ing based approaches have shown great potentials in large-
scale indexing and searching [11]. In this paper, we propose a
data-driven algorithm that uses deep neural network to learn
descriptor from raw video. The proposed work breaks down
the task of learning video descriptor into a number of sub-
problems and train neural networks to tackle each of them,
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including capturing the spatio-temporal correlations among
visual information, making compact and invariant representa-
tion of learned features, and balancing the robustness and dis-
criminative capability of the final descriptor. The comparative
experiments over public databases demonstrate that the pro-
posed data-driven descriptor can achieve more accurate con-
tent identification than hand-engineered ones.

The reminder of this paper is organized as follows. Sec-
tion 2 describes the architecture of the deep neural network
and the training algorithm. Experimental results are presented
in Section 3, and conclusions are summarized in Section 4.

2. METHOD

2.1. Modeling spatio-temporal correlations

The correlations among neighboring pixels and successive
frames reflect the local structures in each frame and their
time dynamics, which is a kind of most discriminative and
stable visual characteristic. However, it is very challenging
to capture and represent such abstract visual characteristic.
To tackle this challenge, we take the Conditional Restricted
Boltzmann Machine (CRBM) [12] as one of the key com-
ponents for constructing the deep feature-learning network.
CRBM can simultaneously model the statistical correlations
of visual information along the spatial and temporal direc-
tions. More specifically, the spatial correlations among pixels
are modeled by the connection between the visible and hid-
den layers at the same time instant, while the temporal ones
among successive frames are modeled by the connections
between the layers at different time steps. Let us denote the
NV -dimensional vectorized representation of the t-th frame
as vt ∈ RNV , and it is set as the visible layer at time t, as
shown in Fig.1. CRBM uses an energy function to define the
joint probability of visible and hidden units conditioned on m
past frames,

p(vt,ht|vt−1, · · · ,vt−m) = exp(−E(vt,ht))/Z, (1)

where ht ∈ {0, 1}NH (NH < NV ) represents the states of
hidden units, and Z =

∑
ht

∑
vt

exp(−E(vt,ht)) is the par-
tition function. The energy in (1) is defined as

E(vt,ht) =
1
2
‖vt − (

m∑

k=1

Akvt−k + a)‖22 (2)

−(
m∑

k=1

Bkvt−k + b)T ht − vT
t Wht.

As illustrated in Fig.1, W ∈ RNV ×NH , Ak ∈ RNV ×NV

and Bk ∈ RNH×NV (k = 1, · · · ,m) are weight matrices,
a ∈ RNV and b ∈ RNH are the bias terms associated with
the visible and hidden layers, respectively. It is obvious from
Fig.1 that vt−1, · · · ,vt−m provide dynamic biases to vt and

Fig. 1. Architecture of CRBM.

ht. According to (1) and (2), we can derive that the condi-
tional distribution of the j-th (j = 1, · · · , NV ) element of vt

given ht,vt−1, · · · ,vt−m follows a Gaussian distribution:

p([vt]j |ht,vt−1, · · · ,vt−m) (3)

= N ([a +
m∑

k=1

Akvt−k + Wht]j , 1),

where [·]j represents the j-th element of a vector. The con-
ditional distribution of the state of each hidden unit can be
computed as

p([ht]j = 1|vt, · · · ,vt−m) = f




[
m∑

k=1

Bkvt−k + b + W T vt

]

j




(4)
where f(z) = 1/(1+exp(−z)) is the sigmoid activation func-
tion. The criterion for training the CRBM is to learn a set
of parameters {W ,a, b,Ak,Bk} (k = 1, · · · ,m) that can
minimize the following negative log-likelihood.

LCRBM = −ln p(vt|vt−1, · · · ,vt−m) (5)

= −ln
∑

ht

exp(−E(vt,ht)) + ln
∑

ht

∑
vt

exp(−E(vt,ht)).

We minimize LCRBM via stochastic gradient descent. For the
sake of computational efficiency, the gradient of the second
term in (5) are approximated via Gibbs sampling, as in train-
ing the traditional RBM. The proposed algorithm takes the ac-
tivation of hidden units as the NH -dimensional intermediate
descriptor of each frame. From (4), we see that the activation
of the j-th hidden unit equals to the conditional probability
that it is in the ‘on’ state.

2.2. Compressing intermediate descriptor

It is worth noting that the above training procedure does not
explicitly concern the robustness of the descriptor. More-
over, a two-layer CRBM is not able to aggregate the input
video to a compact descriptor. As a result, another neural net-
work is trained to complement the CRBM. We desire that the
second neural network can simultaneously reduce the redun-
dancy in the intermediate descriptor and discover the informa-
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Fig. 2. The process of constructing the deep neural network for learning video descriptor. (a) train a pair of CRBM and
denoising auto-encoder, (b) stack the encoder on top of the CRBM to form a CRBM-Encoder module, (c) after training N
CRBM-Encoder modules, train a post-processing network and stack it on top of them.

tion that is invariant to distortions. To this end, we train a de-
noising auto-encoder [13] using pairs of intermediate descrip-
tors extracted from original and distorted videos, as shown in
Fig.2(a). The input-hidden and hidden-output connections of
the DAE form a encoder E(·) and a decoder D(·), respec-
tively, and the size of the hidden layer is much smaller than
that of the input layer. Denote the n-th training example by
(xn, x̂n), where xn is the descriptor of an original training
video and x̂n is its distorted version. The objective for train-
ing the DAE is to find a compressed representation of x̂n from
which xn can be recovered:

LDAE =
1
2

∑
n

‖D(E(x̂n))− xn‖22 +
λDAE

2

2∑

l=1

(W (l)
i,j )2, (6)

Given the weight matrices and bias terms {W (l), b(l)|l =
1, 2}, the mapping defined by the encoder and the decoder
can be expressed as E(x) = f(W (1)x + b(1)), D(E(x)) =
f(W (2)E(x)+b(2)), respectively. It is obvious from (6) that
the encoder E(·) has the capabilities of dimensionality reduc-
tion and error correcting; hence, the input-to-hidden connec-
tions of the DAE is stacked on top of the CRBM, as Fig.2(b)
shows. After training a pair of CRBM and encoder, we freeze
their parameters, and the outputs of the encoder are collected
for training the next pair. By sequentially training multiple
CRBM-Encoder modules and concatenating them together,
we get a deep neural network.

2.3. Balancing robustness and discriminative capability

To make accurate content identification, video descriptor
should exhibit a good balance among robustness and dis-
criminative capability. The aforementioned feature learning
network is trained to encode the spatio-temporal visual char-
acteristics of video to a compact descriptor, but the tradeoff
between robustness and discriminative capability is not ad-
dressed. We finally train a double-layer network to refine
the descriptor generated by the neural network formed by
CRBM+Encoder modules, aiming to strike the optimal bal-
ance between robustness and discriminative capability. The

post-processing network is trained using pair-wise descrip-
tors: (vn,1,vn,2, yn), where n is index of the example, vn,1

and vn,2 are the intermediate descriptors of two training
videos output by the top CRBM+Encoder module, and yn

is the label (yn = +1 for perceptually similar pair, and
yn = −1 otherwise). Let φ(·) be the mapping defined by
the post-processing network, we define the following cost
function:

LPost =
1
2

∑
n

yn‖φ(vn,1)− φ(vn,2)‖22 +
λPost

2

2∑

l=1

(W (l)
i,j )2. (7)

We minimize (7) using the stochastic gradient descent based
back-propagation.

After training a series of CRBM-Encoder modules and
the post-processing layers, we stack them together to form
the descriptor-learning network. Take the network with N
modules for example (as illustrated in Fig.2(c)), its architec-
ture can be expressed as: CRBM1 → Encoder1 → · · · →
CRBMN → EncoderN → Post-Processing, where each sub-
network is trained using the output of the one immediately
follows it.

3. EXPERIMENTAL RESULTS

The performance of the deep learning based video fingerprint-
ing algorithm was evaluated by content identification exper-
iments, and our experiments were conducted on two public
benchmark databases: the Youtube test set (600 sequences)
[16] and the TRECVID test set (201 sequences) [17]. Nine
kinds of photometric, geometric, temporal and joint spatio-
temporal manipulations were applied on testing sequences,
resulting in 13,617 distorted copies (depends on the number
of distortion parameters). Table.1 presents the detailed in-
formation of each distortion. All the distortions were imple-
mented using Matlab except compression. By taking every
original and distorted video as query, 14,418 rounds of con-
tent identification were carried out.
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Table 1. CONTENT-PRESERVING DISTORTIONS
Distortion Description

Encoder: XVid, frame rate: 25fps,
Compression bit rate: 256kbps,

fixed resolution: 480× 320

Median Filtering Filter size ∈ [10, 20]

Gaussian Noise Zero mean, variance ∈ [0.1, 0.5, 1]

Rotation+Cropping θ ∈ [2, 5, 10]

Histogram Equalization Number of gray levels ∈ [16, 32, 64]

Frame Dropping Delete 25% frames and then linearly interpolate
Frame Resizing Ratio ∈ [0.2, 4]

Joint Spatio-temporal Combine median filtering (filter
Distortion 1 size=10) and frame dropping (25%)

Joint Spatio-temporal Combine rotation (θ = 5) and
Distortion 2 frame dropping (25%)

The deep neural network was trained using the Hol-
lywood2 Human Actions and Scenes data set [18], and
the training sequences were not included in the test set.
The architecture of the network is 1024-300-100-80-50-40-
30, which can be decomposed into two CRBM+Encoder
modules:(1024-300-100),(100-80-50), and a post-processing
module (50-40-30). The orders of the first and the second
CRBM were set to m = 3, and λDAE=λPost = 10−5. Before
feeding a video into the neural network, we first smoothed it
via low-pass filtering and temporal averaging, and then nor-
malized it to 32×32×20. The network maps each normalized
frame to a descriptor of length 30.

Table 2. COMPARISONS ON THE F1 SCORES
Dist. Proposed CGO SGM DCT RP

Comp. 0.907 0.801 0.929 0.889 0.845
Flt. 0.994 0.887 0.978 0.991 0.966

Noise 0.999 0.813 0.890 0.896 0.624
Rot. 0.988 0.534 0.939 0.838 0.950

Hist. Eq. 0.980 0.839 0.836 0.851 0.519
Drop. 0.999 0.996 0.994 0.999 0.999
Res. 0.999 0.903 0.994 0.998 0.948

Joint Dist. 1 0.996 0.941 0.985 0.997 0.981
Joint Dist. 2 0.993 0.516 0.968 0.888 0.965

Overall 0.982 0.783 0.915 0.894 0.793

The proposed hashing algorithm was compared with four
representative video fingerprinting algorithms: the structural
graphical model based (SGM) [14], the 3D discrete cosine
transform based (DCT) [15], the radial projection based (RP)
[2], and the centroids-of-gradient-orientations based (CGO)
[3], among which SGM and DCT are spatial-temporal al-
gorithms, and the other two are key-frame based. All the
comparative algorithms were implemented using the source
codes provided in [16], and input sequences were normal-
ized to fixed size (SGM, DCT and RP: 75 × 75 × 20; CGO:
120 × 120 × 20). In our experiments, descriptors were com-
puted for the first 500 frames of each testing sequence, and
two sequences are classified as being perceptually similar if

Fig. 3. Comparisons on ROC curves.

the Euclidean distance between their descriptors is smaller
than a threshold τ . The results of content identification were
compared with ground-truth to compute the false rejection
and false acceptance rates (FRR and FAR). By sweeping τ
in a wide range, we compute the F1 score and plot the re-
ceiver operating characteristic (ROC) curves, as displayed in
Table 2 and Fig.3, respectively. We see that the proposed
work achieves the best performance in content identification,
and it is the only one whose F1 scores are higher than 0.9
in all cases. Compared with other testing algorithms, the
most distinct feature of the proposed one lies in its capabil-
ity of capturing the statistical correlations of visual informa-
tion. As a result, the output descriptor can resist a wider spec-
trum of distortions. Take histogram equalization for exam-
ple, the F1 score of the proposed algorithm far surpasses that
of the second best. Histogram equalization, especially the
one with quit few bins, can dramatically change pixel inten-
sities. However, it does not alter the statistical correlations
among pixels, which can account for the fact that some ge-
ometrically dominant local structures are still clearly visible
after histogram equalization. Since the deep neural network is
trained to learn an invariant representation of such abstract vi-
sual attributes, the learned descriptor can exhibit much higher
robustness than those hand-engineered ones.

The proposed deep learning based video descriptor is also
computationally efficient. As measured on a PC equipped
with 32G RAM and a 3.2GHz GPU, computing the descriptor
of a 500-frame video sequence takes 1.52s on average.

4. CONCLUSIONS

We have presented a novel data-driven algorithm for com-
puting video descriptor, where visual features are learned by
modeling the time dynamics and spatial correlations of video.
Compared with several representative algorithms, we have
found our data-driven approach shows substantial advantage
in terms of content identification accuracy. Our future work
will focus on developing a fine-tuning algorithm that to a top-
down optimization of the whole network.
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