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ABSTRACT

Detecting image resampling in re-compressed images is a very
challenging problem. Existing approaches to image resampling de-
tection operate by building pre-selected model to locate periodicities
in linear predictor residues. Additionally, if an image was JPEG
compressed before resampling, existing techniques detect tampering
using the artifacts left by the pre-compression. However, state-of-
the-art approaches cannot detect resampling in re-compressed im-
ages initially compressed with high quality factor. In this paper, we
propose a novel deep learning approach to adaptively learn resam-
pling detection features directly from data. To accomplish this, we
use our recently proposed constrained convolutional layer. Through
a set of experiments we evaluate the effectiveness of our proposed
constrained convolutional neural network (CNN) to detect resam-
pling in re-compressed images. The results of these experiments
show that our constrained CNN can accurately detect resampling in
re-compressed images in scenarios that previous approaches are un-
able to detect.

Index Terms— Image forensics, convolutional neural networks,
constrained convolutional layer, deep convolutional features.

1. INTRODUCTION

Identifying the processing history of an image is an important task
in image forensics. Many image manipulations leave behind unique
traces that can be used to detect the type of image editing. Thus, re-
searchers proceeded by extracting image manipulation features from
these traces then develop associated algorithms to determine the type
of processing operation [1]. Numerous forensic techniques have
been developed to detect several manipulations such as median fil-
tering [2, 3], contrast enhancement [4], blurring [5], etc.

Detection of image resampling has drawn particular attention.
Most techniques to perform image resampling detection operate by
identifying traces in the residue of local linear predictor and exploit
the periodic interpolation artifacts [6, 7]. More explicitly, Popescu
and Farid [6] proposed to detect resampling by jointly estimating
the prediction weights and a pixel dependency measure so called p-
map. This approach is very computationally costly. To address this
problem, Kirchner [7] proposed a simplified approach that operates
by locating periodic variance of the prediction error.

While resampling detection is very effective in uncompressed
images, many resampling traces are masked or destroyed when
JPEG compression is applied to images after resampling has been
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performed. This is known as post-compression. Kirchner and
Gloe [8] demonstrated that if an image was previously JPEG com-
pressed before resampling, then shifted JPEG blocking artifacts that
appear in an image’s p-map can be used to detect resampling in
re-compressed images (i.e., images that have undergone JPEG com-
pression, followed by resampling, then JPEG compression again).

While this approach can successfully detect resampling if the
first compression was performed using a low to moderate quality
factor, it is still unable to detect resampling if the first compression
was performed with a high quality factor [8]. This is particularly
important since in most real world scenarios, images taken by digital
cameras are saved using the camera’s default compression settings
that use very high quality factors. As a result, detecting resampling
in re-compressed images with a high initial quality factor remains an
important open problem.

Recently, a novel convolutional neural network (CNN) based ap-
proach using a new type of convolutional layer, called constrained
convolutional layer, has been mainly designed to perform image
forgery detection task [9]. In their standard form, CNNs tend to learn
image’s content which will lead to a classifier that detects objects and
scenes in images. By contrast, the constrained convolutional layer
has been used to suppress an image’s content and adaptively learn
image manipulation features. Instead of using pre-selected models
or “hand-designed” features, this approach adaptively extracts fea-
tures related to local pixel dependencies by forcing CNN to learn
prediction-error filters while training the network.

In this paper, we propose a new CNN architecture that is able
to perform image resampling detection in re-compressed images.
To accomplish this, we use the constrained convolutional layer pro-
posed in our recent work [9]. In our CNN architecture we use 1× 1
convolutional filters to learn new associations between feature maps.
Additionally, to improve the final accuracy of our proposed approach
we use the deep convolutional features [10] learned by our CNN to
train an extremely randomized trees classifier [11]. We evaluated
the robustness of our CNN in extracting image resampling features
from re-compressed images with different scaling and quality factors
through a set of experiments. Our experimental results showed the
effectiveness of our approach in detecting upscaling and downscal-
ing tampering with re-compressed images.

2. CONVOLUTIONAL NEURAL NETWORKS

CNNs are an approach from deep learning that has gained attention
due to their ability to learn classification features directly from data.
They have been first proposed in the late 1980’s with handwritten
zip code recognition [12] as an extended version of neural networks
(NN). Moreover, CNNs have been successfully used with a large
variety of different types of signals such as speech [13], images [14]
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and text data [15].
In a CNN architecture, the convolutional layers act as features

extractors. In fact, the input image to the network is first convolved
with a set of parallel filters with a fixed dimension and an overlap-
ping distance called stride. The output of each convolutional fil-
ter, known as feature map, is a new representation of the input data.
Subsequently, these output feature maps are then convolved with the
following hidden convolutional layers in the network to learn new
lower level representation of the data. The output of the final con-
volutional layer is fed to a regular fully-connected neural network
to perform the classification task. Similarly to NN, a convolutional
layer is followed by an activation function to introduce non-linearity
throughout the network.

The set of parallel convolutional operations yields a large feature
map volume. Therefore, a convolutional layer is typically followed
by a pooling layer for dimensionality reduction purpose. There exist
many types of pooling layers such as max, average and stochastic
pooling. These types of layers, retain the most significant features
within a feature map. The max-pooling layer for instance, operates
by keeping the maximum value within a sliding window with a stride
distance.

The analytical expression of the convolutional operation be-
tween the input feature maps and a convolutional layer within the
CNN architecture is given in Eq. (1):

h
(n)
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K∑
k=1

h
(n−1)
k ∗w(n)

kj + bj(n), (1)

where ∗ denotes a 2D convolution, h(n)
j is the jth feature map out-

put in the nth hidden layer, h(n−1)
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hidden layer, w(n)
kj is the kth channel in the jth filter in the nth layer
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j is its corresponding bias term. The weights of the convolu-

tional filters and fully connected layers are initially randomly seeded
then updated during training through an iterative algorithm called
back-propagation. This algorithm alternates between feedforward
and back-propagation passes where the weights are updated during
the back-propagation passes. At the end, we would like to minimize
the average loss between the actual labels and the network outputs,
i.e.,E = 1
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, where y∗(k)i and y(k)i are

respectively the true label and the network output of the ith image
at the kth class with m training images and c neurons in the output
layer.

To minimize the average loss, we use the stochastic gradient de-
scent (SGD) solver [16]. The iterative update rules for the filters
coefficients w(n)

ij in CNN during the back-propagation pass is given
below:
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where w
(n)
ij is the ith channel from the jth kernel matrix in the nth

hidden layer that convolves with the ith channel in the previous fea-
ture maps of the (n−1)th layer,∇w(n)

ij denotes the gradient of w(n)
ij

and ε is the learning rate. The bias term b
(n)
j in (1) is updated using

the same equations presented in (2). For fast convergence as ex-
plained by LeCun et al. in [17], we use the decay and momentum
strategy which are respectively denoted by d and m in (2).

3. CONSTRAINED CONVOLUTIONAL LAYER

Though existing approaches to resampling detection have proven ef-
fective, they are still not capable to successfully identify manipula-
tion traces in re-compressed images that were initially compressed
with high quality factors. Particularly, state-of-the-art technique [7]
uses pre-determined model of prediction error to identify resampling
artifacts which may lead to decision features that may not capture
all the traces left by resampling. By contrast, CNNs have proven
powerful at extracting classification features from data. However,
with digital images CNNs learn features related to the image con-
tent. Therefore, the constrained convolutional layer has been de-
signed for multimedia forensics task to suppress an image’s content
and extract prediction residual features [9] by enforcing prediction
error-filters constraints on the first convolutional layer while training
the network. More explicitly, each of the K filters w(1)

k in the first
layer of the CNN have the following constraints placed on them:{

w
(1)
k (0, 0) = −1∑
`,m6=0 w

(1)
k (`,m) = 1

(3)

The training of the constrained CNN is summarized in the fol-
lowing algorithm:

Algorithm 1 Training algorithm for constrained convolutional layer
1: Initilize wk’s using randomly drawn weights
2: i=1
3: while i ≤ max iter do
4: Do feedforward pass
5: Update filter weights through stochastic gradient

descent and backpropagate errors
6: Set wk(0, 0)

(1) = 0 for all K filters
7: Normalize w

(1)
k ’s such that

∑
`,m 6=0 w

(1)
k (`,m) = 1

8: Set wk(0, 0)
(1) = −1 for all K filters

9: i = i+1
10: if training accuracy converges then
11: exit
12: end

As a result of the above algorithm, the first convolutional layer
adaptively extracts prediction-error features from input images then
the next convolutional hidden layers learn new lower representation
of these features. Thus, in this work we use the constrained con-
volutional layer to capture pixel value dependencies and adaptively
learn features related to the periodicities in the prediction error gen-
erated by the resampling operation. As mentioned above, existing
methods are not very successful in detecting resampling traces in
pre-compressed images with high quality factors.

In fact, it is known that images are generally saved in JPEG
format in digital cameras with high quality factors. Additionally,
JPEG generates strong peaks in the p-map’s spectrum that are used
to detect resampling by identifying shifts in their positions [8]. The
stronger the artifacts were, the more they will remain in the pro-
cessed images. However, when an image is pre-compressed with
high quality factor, the JPEG peaks are not anymore detectable.
Moreover, a post-compression after resampling makes the detection
even more difficult since the artifacts left by the first compression
may be destroyed by the second one. On the other hand, our pro-
posed constrained CNN adaptively extracts resampling features from
data that may not be captured using pre-selected models. Thus, this
approach generalizes a substantial amount of research in resampling
detection.
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Fig. 1. CNN proposed architecture; BN:Batch-Normalization Layer; TanH: Hyperbolic Tangent Layer

4. NETWORK ARCHITECTURE

In this section we present a brief description about every type of
layer that we have used in our proposed CNN architecture. Fig. 1
depicts the overall design of our CNN with details about the size
of each layer. One can notice that we use four different blocks to
perform different tasks: First, the constrained convolutional filters
are used to perform prediction error feature extraction. The second
block, uses three convolutional layers to extract lower level hierar-
chical features. Subsequently, we use a block that consists of 1 × 1
convolutional filters to learn new associations between different fea-
ture maps. Finally, the output of the latter block is fed to the clas-
sification block which consists of three fully-connected layers. In
this work, the input layer of our CNN is the green layer of an image
patch sized 256× 256 pixels.

Convolutional Layers The convolutional layers in CNNs act as
feature extractors. From Fig. 1, we can notice that we use three dif-
ferent types of convolutional layers, namely one “Constrained Conv”
layer which is the constrained convolutional layer presented in Sec-
tion 3, three regular convolutional layers and 128 1×1 convolutional
filters in “Conv5” to learn new association between feature maps.
One can notice also that we used a stride of size 1 in all the convolu-
tional layers except in “Conv2” where we used a stride of 2. Fig. 1
depicts the size of filters in each convolutional layer as well as the
dimension of their corresponding output feature maps.

Activation Function Similarly to neural networks, convolutional
layers are followed by an activation function. In our architecture we
use hyperbolic tangent (TanH) activation functions. In Fig. 1, we
can notice that all the regular convolutional layers are followed by
a TanH activation function. However, feature maps learned by the
“Constrained Conv” layer are not followed by a TanH layer. This
is mainly because the learned prediction residual error features can
easily be destroyed by many types of nonlinear operations. Finally,
to classify our images, we use two neurons in the output layer, i.e.,
original versus resampled, with a softmax activation function where

every input image corresponds to the highly activated neuron.

Batch Normalization To minimize the internal covariate shift,
which is the change in the input distribution to a learning system,
we have to apply a zero-mean and unit-variance transformation of
the data while training the CNN model. To do this, we use a batch
normalization layer after each regular convolution. More specifi-
cally, The input to each layer gets affected by the parameters of all
previous layers and even small changes get amplified. Therefore,
the batch normalization layer addresses this problem and improves
the final accuracy of CNN.

Pooling From Fig. 1, we can notice that we use two types of pool-
ing in our CNN, i.e., three max-pooling and one average-pooling af-
ter “Conv5” layer. In all pooling layers, we use a sliding window of
size 3×3 and stride of 2. This type of layer is mainly used to reduce
the dimension of the large feature map volumes hence accelerates
the training process by reducing the computational cost. Moreover,
the max-pooling layer retains the maximum value within the local
neighborhood of the sliding window, whereas, the average-pooling
layer retains the average in a local neighborhood.

Deep Convolutional Features Similarly to [10], we extract the
output of the activation function from the second fully-connected
layer “FC2” by doing a feedforward pass of the training and test-
ing data after completing the training of our CNN. Therefore, each
256 × 256 patch in the training and testing data has its correspond-
ing 200 features vector. Then, we train an extremely randomized
trees classifier using the new collected data. This latter approach has
proven to improve the final classification accuracy.

5. EXPERIMENTS

We evaluated the robustness and ability of our CNN in adaptively ex-
tracting resampling detection features through a set of experiments.
We use our proposed CNN as a binary classifier to detect resam-
pling operations in re-compressed images with different scaling fac-
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Table 1. CNN resampling detection rate using Softmax layer and ET classifier on re-compressed images with 150% upscaling, 120%
upscaling and 50% downscaling manipulations

Post-compression Quality Factor
Resampling Operation QF = 50 QF = 60 QF = 70 QF = 80 QF = 90 No Re-compression

150% upscaling (Softmax) 91.22% 96.44% 97.88% 98.19% 99.52% 99.83%
150% upscaling (ET) 91.35% 96.65% 97.82% 98.26% 99.61% 99.99%

120% upscaling (Softmax) 84.08% 92.99% 95.73% 95.62% 99.30% 99.35%
120% upscaling (ET) 84.02% 93.24% 95.86% 95.98% 99.42% 99.54%

50% downscaling (Softmax) 83.74% 87.99% 89.21% 86.93% 92.35% 98.19%
50% downscaling (ET) 83.98% 88.31% 89.69% 87.22% 92.48% 98.21%

tors and JPEG compression quality factors. Additionally, we use
the deep convolutional features learned by our CNN to train an ex-
tremely randomized trees (ET) classifier.

Data collection We collected 6, 500 images of size at least
2, 688 × 1, 520 from 12 different camera models. To make sure
that our approach did not learn features related to camera device
parameters, the training and testing images were collected from
two separate sets of devices and saved using the camera’s default
compression settings. Though most cameras use proprietary quan-
tization tables, the tables used by the cameras in these experiments
are approximately equivalent to compression using a quality factor
in the 95-97 range. In this paper we consider the image resampling
processing using bilinear interpolation with three different scaling
factors, i.e., 50%, 120% and 150%.

We converted each image to grayscale by retaining only its green
color layer of each image. We then divided each grayscale image
into 256×256 pixel blocks to create a set of 30,000 unaltered blocks.
Next, we created several sets of resampled and recompressed im-
ages. To accomplish this, we first rescaled every unaltered block us-
ing each of three different scaling factors: 50%, 120%, and 150%.
After this, we compressed each of the resampled images and their
corresponding unaltered version with different quality factors.

In total, we created 18 different databases, i.e., three scaling fac-
tors (50%, 120%, 150%) with five different re-compression quality
factors (QF = 50, 60, 70, 80, 90) along with no re-compression
operation for each type of resampling. Each database consisted of
60, 000 patches where 50, 000 patches (approximately 84%) were
used for training and 10, 000 patches (approximately 16%) for test-
ing.

Training parameters We set the training parameters of the
stochastic gradient descent as follows: momentum = 0.95,
decay = 0.0005, and a learning rate ε = 10−3 that decreases
every 5, 000 iterations by a factor γ = 0.5. We set the batch size
equal to 64 and the described binary models in this section are
trained for 50, 000 iterations. The testing accuracy was recorded
every 1, 000 training iterations.

Experimental results We used our proposed constrained CNN ar-
chitecture to perform resampling detection on each set of resam-
pled and re-compressed images. We conducted a set of two exper-
iments. To accomplish this, we first trained our CNN with 18 dif-
ferent datasets to assess the ability of our proposed model in classi-
fying resampled images with different scaling and compression pa-
rameters. Then we evaluated the deep convolutional features ap-

proach [10] using an ET classifier [11]. Table 1 shows the detection
accuracies with different quality factors and scaling parameters re-
spectively equal to 150%, 120% and 50% using a softmax layer
and ET classifier. One can notice from Table 1 that with upscaling
operations our CNN can typically achieve an accuracy higher than
91.22% with all the quality factors except for 120% upscaled im-
ages with QF = 50 which are detected with an accuracy equal to
84.08%. Though the detection accuracy decreases when using low
post-compression’s quality factor, our approach can still detect re-
sampling even with a low post-compression quality factor such as
50.

As mentioned above, Kirchner and Gloe technique [8] fails to
detect downscaling operation when the first compression’s quality
factor is very high. However, from Table 1 we can see that our ap-
proach successfully detect 50% downscaled images with an accu-
racy higher than 83.74% with all quality factors. We believe that our
constrained CNN is able to learn subtle artifacts left by shifts in the
original JPEG blocking grid. We can also notice that CNN is able
to detect resampling in re-compressed images with QF = 70 bet-
ter than detecting re-compressed images with QF = 80 for 120%
upscaling and 50% downscaling.

We finally use the deep convolutional features to train an
ET classifier as explained in Section 4. We can notice that this
method has improved the final accuracy of our approach with all
our databases except with 120% upscaled re-compressed images
with QF = 70 and 50% downscaled re-compressed images with
QF = 50 where the testing accuracies decreased respectively from
97.88% to 97.82% and from 84.08% to 84.02%.

6. CONCLUSION

In this paper, we have proposed a novel deep learning based ap-
proach to perform image resampling detection in re-compressed im-
ages. To accomplish this, we used a constrained convolutional layer
to adaptively learn features for detecting traces left by resampling
and JPEG pre-compression. We evaluated the performance of this
approach using images resampled using three different scaling fac-
tors and re-compressed using five different JPEG quality factors.
The results of these experiments show that our constrained CNN can
accurately detect resampling in re-compressed images in scenarios
that previous approaches are unable to detect.
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