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ABSTRACT

Forensic Voice Comparison (FVC) is increasingly using the likeli-
hood ratio (LR) in order to indicate whether the evidence supports
the prosecution (same-speaker) or defender (different-speakers) hy-
potheses. Nevertheless, the LR accepts some practical limitations
due both to its estimation process itself and to a lack of knowledge
about the reliability of this (practical) estimation process. It is partic-
ularly true when FVC is considered using Automatic Speaker Recog-
nition (ASR) systems. Indeed, in the LR estimation performed by
ASR systems, different factors are not considered such as speaker
intrinsic characteristics, denoted ”speaker factor”, the amount of in-
formation involved in the comparison as well as the phonological
content and so on. This article focuses on the impact of phono-
logical content on FVC involving two different speakers and more
precisely the potential implication of a specific phonemic category
on wrongful conviction cases (innocents are send behind bars). We
show that even though the vast majority of speaker pairs (more than
90%) are well discriminated, few pairs are difficult to distinguish.
For the “best” discriminated pairs, all the phonemic content play a
positive role in speaker discrimination while for the “worst” pairs,
it appears that nasals have a negative effect and lead to a confusion
between speakers.

Index Terms— Forensic voice comparison, phonemic category,
wrongful conviction, speaker factor, speaker recognition, reliability.

1. INTRODUCTION

Forensic voice comparison (FVC) is based on the comparison of a
recording of an unknown criminal’s voice (the evidence or trace)
and a recording of a known suspect’s voice (the comparison piece).
It aims to indicate whether the evidence supports the prosecution
(the two speech excerpts are pronounced by the same speaker) or
defender (the two speech excerpts are pronounced by two different
speakers) hypotheses. In FVC, as well as in several other foren-
sic disciplines, the Bayesian paradigm is denoted as the logical and
theoretically sounded framework to model and represent forensic ev-
idence reports [1, 2]. In this framework, the likelihood ratio (LR)
is used to present the results of the forensic expertise. The LR not
only supports one of the hypothesis but also quantifies the strength
of its support. The LR is calculated using Equation 1.

LR =
p(E/Hph)

p(E/Hdh)
(1)

where E is the evidence or trace, Hph is the prosecutor hypothesis
(same origin), and Hdh is the defender hypothesis (different origins).

Automatic Speaker Recognition (ASR) is considered as one of
the most appropriate solution when LR framework is involved [3].

Even though ASR systems have achieved significant progresses in
the past two decades and have reached impressive low error rates
(≈ 1% [4]), using these systems to assess the strength-of-evidence
in court remains inconclusive and raises some doubts about their reli-
ability [5]. In other words, if the LR value is used by a court in order
to help to take a decision, inevitably, “errors of impunity” or even
wrongful conviction [6] -considered as the most outrageous in the
miscarriage of justice- will occur. Wrongful convictions have been
seen since a long time in the judicial process [7]. This pushed several
jurists to highlight this serious phenomenon such as William Black-
stone, an 18th century English jurist known by this famous quote:
“It is better that ten guilty persons escape than that one innocent
suffer”. Up to now, wrongful conviction cases are staggering and
can not be prevented by the criminal judicial system [8, 9, 10, 11].
Serious study of this phenomenon began less than a decade after
an unquantifiable number of wrongfully convicted persons that have
served prison sentences or even been executed for crimes committed
by others [7]. An example cemented in memory and highlighted by
the mass media, is the tragic wrongful conviction of “George Stin-
ney” who was the youngest person in the U.S. in the 20th century to
be sentenced to death and to be executed (14 years old) when he was
innocent or “Ricky Jackson” who was released recently after spend-
ing 39 years behind bars. Many others wrongful conviction cases are
mentioned in [12].

At the beginning of 1992 and thanks to the “Innocence Project”
which has led to the exoneration of a significant number of innocent
previously convicted (196 cases until now), forensic practices have
received much attention [8, 13, 14, 15]. FVC, like some other foren-
sic disciplines, is not infallible and therefore this scenario is still a
very challenging one for ASR for several reasons: First, the com-
putation of the LR by an ASR system is only approximated by an
extraction process and therefore, despite its nice theoretical aspects,
will accept some limitations coming from imperfections of this esti-
mation. It is particularly true if we take for example the “calibration”
process [16, 17, 18] where ASR system is outputting a score and us-
ing different normalization steps to see this score as a LR.

Second, the appealing high accuracy reached by ASR system
should be taken with caution. Indeed, the evaluation protocols (for
example in NIST-SRE [19]) focus on global performance using a
brute-force strategy and take into account the averaged behavior of
ASR systems. Consequently, these protocols may ignore many sen-
sitive cases which represent several distinct specific situations where
the ASR systems may show a specific behavior due, for example,
to the speech samples that could be recorded in different situations,
the noises, the content of the recordings or the speakers themselves.
Several research works emphasized the limits of the underlined eval-
uation protocols [20, 21].

Third, the phonological content play an important role in speaker
comparison. Several research works like [22, 23, 24] agree that
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speaker specific information is not equally distributed on the speech
signal and particularly depends on the phoneme distribution. For
example, in [25, 24, 26] authors show that nasal and oral vowel con-
vey the most important speaker specific information than the other
phonemic categories. However, for ASR system based on I-vector,
a recording is encoded by one low dimensional vector and thereby
the phonological content of a recording is not used explicitly, as well
as the presence or absence of different speaker-specific cues, which
could be a key in some forensic cases.

Despite the apparent richness of the above literature review, the
analyze of the phonological content impact on speaker comparison
are still dedicated to ASR and do not take into account the specific
context of FVC: there is no evaluation of the impact of the phono-
logical content regarding different speakers and/or an assessment of
a specific phonological category impact on the speaker discrimina-
tion where only two different speakers are involved. This is mainly
due to a lack in terms of number of recording per speaker in the used
databases.

This paper is dedicated to focus on the third point of the high-
lighted lacks. We investigate the impact of phonological content
on the comparison process in order to determine if there are some
phonological classes that are bringing more speaker specific cues
than others, or also the potential implication of a specific phone-
mic category on the confusion between two speakers which leads to
wrongful conviction in forensic context. This work could be done
thanks to Fabiole database which provide a high number of speech
recordings per speaker and therefore the impact of phonological con-
tent per speaker as well as per speaker pairs could finally be investi-
gated.

2. PHONOLOGICAL CONTENT AND SPEAKER
DISCRIMINATION

If everybody agrees on the fact that voice signal is conveying infor-
mation on the speaker, including speaker’s identity, it is less easy to
list the different cues which embed this aspect (this is true for both
human perception and automatic systems). In this research work,
we do not wish to answer to this question but we propose to use an
ASR system in order to investigate the links between phonological
content and speaker discrimination abilities.

2.1. A review of literature
Several earlier studies have analyzed the speaker-discriminant prop-
erties of individual phonemes or of phoneme classes [27, 28, 29].
The authors agreed that vowels and nasals provide the best discrimi-
nation between speakers. [30] presents a ranking of 24 isolated Ger-
man phonemes, which indicates nasals as providing the best SR per-
formance, with the voiced alveolar fricative /z/ and the voiced uvular
fricative /K/ also performing fairly well. In [31], /s/, /t/ and /b/ are
found to perform worse than vowels and nasals. [27, 28] strongly
promote the nasals and vowels as best performers. The influence
of the phonological content of both voice recordings was also evalu-
ated in [22] in which authors suggest that glides and liquids together,
vowels -and more particularly nasal vowels- and nasal consonants
contain more speaker-specific information than phonemically bal-
anced speech utterances. According to [25, 26, 24, 29], nasals and
vowels were found to be particularly speaker specific information
and nasal vowels are more discriminant than oral vowels. Finally,
[23] and, more recently, [32], show that some frequency sub-bands
seem to be more relevant to characterize speakers than some others.

It appears clearly from this literature survey that the phonolog-
ical content has an impact on speaker recognition performance and

that it seems possible to rank the phoneme depending on their abil-
ities in terms of speaker discrimination. It is important to remind
that we discuss here results obtained using an ASR system as a mea-
surement instrument. We are not able to discriminate between the
intrinsic characteristics of a cue and the way that this cue is taken
into account by an ASR system.

2.2. Phoneme classification
To conduct our work, we propose to use phoneme classes in place
of individual phonemes. Working on phoneme classes presents two
main advantages in the context of our study. First, to study the effect
of phonological content, a phoneme transcription/alignment process
is mandatory. If the classification is well chosen, the use of phoneme
classes will reduce the effect of potential errors done at the tran-
scription level. Second, the speech extracts involved in FVC trials
are usually of a relatively short duration. To work at phoneme level
presents a risk of piecemeal or inconsistent results, due to insuffi-
cient amount of speech material for some phonemes. Working with
a short set of phoneme classes will allow to overcome this risk. In
this work, we propose to classify the speech content into 6 phoneme
categories based on phonological features. The phoneme classifica-
tion is describe below: oral vowels (OV) {/i/, /u/, /y/, /e/, /E/, /ø/, /œ/,
/o/, /O/, /A/.}, nasal vowels (NV) {/Ã/, /Õ/, /ũ/, /Ẽ/}, nasal consonants
(NC) {/m/, /n/}, plosive (P) { /p/, /t/, /k/, /b/, /d/, /g/}, fricatives (F)
{/f/, /s/, /S/, /v/, /z/, /Z/} and liquids (L) {/l/, /ô/}. This phoneme
classification will be adopted in all experiments in this paper.

3. EXPERIMENTAL PROTOCOL

This section presents firstly the database used, FABIOLE. The rest
of the section is dedicated to the methodology retained to evaluate
the impact of the phonological content on FVC.

3.1. Corpus
This work is conducted using FABIOLE database dedicated to in-
vestigate the reliability of ASR-based FVC. FABIOLE is primarily
designed for studies on speaker effect while the other factors are con-
trolled as much as possible: channel variability is reduced as all the
excerpts come from French radio or television shows; the record-
ings are clean in order to decrease noise effects; the duration is con-
trolled with a minimum duration of 30 seconds of speech; gender
is ”controlled” by using only recordings from male speakers; and,
finally the number of targets and non targets trials per speaker is
fixed. FABIOLE database contains 130 native speakers divided into
two sets:

• Set T : 30 target speakers each associated with 100 recordings.
• Set I: 100 impostor speakers each associated with 1 recording.

As we focused on wrongful conviction cases, we are interested on
non-target trials. Only set T is used in order to provide more than
4.5M non-matched pairs. The trials are divided into 30 subsets,
one for each T speaker. These subsets are obtained by pairing each
of the target speaker’s recording (100 are available) with each of
the recordings of the 29 remaining speakers, forming consequently
(100× 100× 29 = 290k) non-targets pairs. More details could be
found in [33].

3.2. Evaluation metric

We use the Cllr largely used in FVC to evaluate the LR. Cllr is not
based on hard decisions like, for example, equal error rate (EER)
[17, 34, 35]. Cllr has the meaning of a cost or a loss: lower the Cllr

is, better is the performance. Cllr could be calculated as follows:
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Fig. 1. bar-plot of CNON
llr per speaker and for “all” (all speakers pooled together).

Cllr =
1

2Nnon

∑
LR∈NON

log2 (1 + LR)

︸ ︷︷ ︸
CNON
llr

+
1

2Ntar

∑
LR∈TAR

log2

(
1 +

1

LR

)
︸ ︷︷ ︸

CTAR
llr

(2)

As shown in Equation 2, Cllr can be decomposed into the sum of
two parts: CNON

llr , which is the average information loss related to
non-target trials. CTAR

llr , which is the average information loss re-
lated to target trials. In FVC applications, the first componentwill
give an idea about the risk of “wrongful conviction” and the second
component will express the risk of ”impunity”.

In this paper, we use an affine calibration transformation es-
timated using all the trial subsets (pooled condition) using FoCal
Toolkit.

3.3. Phoneme filtering protocol for data selection

In order to study the influence of a specific phonemic class (detailed
in Subsection 2.2), we use a knock-out strategy: the in-interest infor-
mation is withdrawn from the trials and the amount of performance
loss indicates the influence of the corresponding speech material. So,
we perform several experiments where the speech material corre-
sponding to a given class is removed from the two speech recordings
of each trials. This condition is denoted here “Specific”. Since the
amount of speech material is largely unbalanced (for example, in our
experiments, nasal consonants represent 6% of the speech material
and oral vowels 36%), in order to avoid a potential bias, we cre-
ate a control condition denoted “Random”, where the correspond-
ing amount of speech material is randomly withdrawn. More pre-
cisely, for each speech signal, when a certain percentage of speech
frames is withdrawn for the “Specific” condition, the same percent-
age of frames is randomly withdrawn for the “Random” condition.
This process is repeated 20 times, creating 20 times more trials in
“Random” condition than in “Specific” one.

The impact of a specific phonemic class is quantified by estimat-
ing the relative CR

llr given by Equation 3.

C
R
llr =

CllrRandom − CllrSpecific

CllrRandom
× 100% (3)

A positive value of CR
llr indicates that the speech material related to

the corresponding phonemic class brings a larger part of the speaker-
discriminant loss than averaged speech material. A negative value
says the opposite: the corresponding phonemic class reduces the dis-
criminant loss compared to averaged phonemic content.

3.4. Baseline LIA Systems

3.4.1. LIA speaker recognition system

In all experiments, we use as baseline the LIA SpkDet system pre-
sented in [36].This system is developed using the ALIZE/SpkDet
open-source toolkit [37, 38]. It uses I-vector approach [4]. Acoustic
features are composed of 19 LFCC parameters, its derivatives, and
11 second order derivatives. The bandwidth is restricted to 300-3400
Hz in order to suit better with FVC applications.

The Universal Background Model (UBM ) has 512 compo-
nents. The UBM and the total variability matrix, T , are trained

on Ester 1&2, REPERE and ETAPE databases on male speakers
that do not appear in FABIOLE database. They are estimated using
“7, 690” sessions from “2, 906” speakers whereas the inter-session
matrix W is estimated on a subset (selected by keeping only the
speakers who have pronounced at least two sessions) using “3, 410”
sessions from “617” speakers. The dimension of the I-Vectors in the
total factor space is 400. For scoring, PLDA scoring model [39] is
applied.

3.4.2. LIA transcription system

FABIOLE database has been automatically transcribed thanks to
Speeral, LIA automatic transcription system [40]. This system was
used to transcribe REPERE development set (which contains speech
recordings close to FABIOLE excerpts) with an overall Word Error
Rate of 29% [41].

4. RESULTS

The global CNON
llr (computed using all the non-target trial subsets

put together) which is expected to be primarily linked to speaker
discrimination power, is equal to 0.04 bits. The reported perfor-
mance level is close to the level showed during the large evaluation
campaigns (like the NIST’s ones) and therefore many details of the
comparison are still hidden.

4.1. Phonological content impact on voice comparison per
speaker

Figure 1 presents CNON
llr estimated individually for each T speaker

(the results are presented following the same ranking as [42], which
was based on general Cllr performance.). Results show that CNON

llr

per speaker presents a significant variation among speakers: The
lowest CNON

llr value, 0.013, is seen for spk.17 while the highest
value, 0.093, is seen for spk. 13 (almost multiplied by 7).

Figure 2 is a stacked bar chart which displays the impact of the
phonemic classes per speaker as well as for “all” condition (averaged
on all the speakers), in terms of relative CNON

llr (CR
llr computed on

CNON
llr ). All phonemic classes appear to embed speaker discrimina-

tion power since their absence leads to a CNON
llr degradation com-

pared to the “Random” case (indicated by a negative value of the
relative CNON

llr ). Moreover, a consistent variation of performance
is observed between the 6 phonemic classes with different extent:
Withdrawing oral vowels causes the largest accuracy loss, ranking
in top this phonemic class in terms of speaker discrimination power
with a large margin with the next class. Nasals, vowels first and
consonants second, appear to convey the most discrimination power
after the oral vowels. Liquid, fricative and plosive obtain similar
results, at the end of the speaker discrimination power scale. The
results are quite consistent between the 30 target speakers, with lim-
ited variations. This outcome corroborates results of [25, 24, 26, 29],
where oral vowels and nasals are found to be particularly speaker
specific information.
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Fig. 2. Stacked bar chart of CR
llr computed on CNON

llr (non-target trials) per speaker and for ”all”.

4.2. Phonological content impact on speaker comparison per
speaker pairs

In order to better suit with FVC context, we study the impact of
phonological content for speaker pairs. The computation of CNON

llr

for all pairs (C2
30=435 pairs) shows that even though the vast major-

ity of pairs (more than 90%) present a very low CNON
llr (<0.01),

there exist few pairs who present a quite high CNON
llr which can

reach 0.9. In Figure 3 and 4, two subsets of speaker pairs are se-
lected, according to speaker discrimination power, in order to better
visualize our results: Figure 3 (respectively Figure 4) uses a form
similar to Figure 2, to present the 10 “best” (respectively “worst”)
speaker pairs in term of CNON

llr value.
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Fig. 3. Stacked bar chart of relative CNON
llr for the 10 “best”

speaker pairs, spki-spkj , in term of discrimination power (mean
CNON

llr =5.10−5).

The mean CNON
llr for the 10 best speaker pairs is equal to 5 ×

10−5 while it is equal to 0.52 for the 10 worst pairs. Figure 3 shows
that almost all the phonemic categories embed a speaker discrimi-
nation power with different extent (there is no misleading phonemic
class) and more precisely oral vowels appear to convey the most im-
portant part of speaker-specific cues: withdrawing these phonemes
increases the CNON

llr as shown for example for the pair “5-2”. On
the other side, Figure 4 shows different outcomes: even if almost all
phonemic categories still play a positive role in speaker discrimina-
tion, withdrawing nasals, vowels or consonant, from the recordings
leads, surprisingly, to an improvement of CNON

llr for most of speaker
pairs. For example, the pairs “24-20” and “3-21”, show a relative
win of 40% and 25% respectively when nasals are withdrawn. This
finding could be explained by the hypothesis of a nasal signature
[43, 44] which corresponds to the transfer function of nasal cavities
and sinuses. This nasal signature reflects mainly anatomical differ-
ences, as the speaker can only connect or not theses cavities to the
vocal tract, without any controlled changes on them [45]. Despite
such inter-speaker anatomical differences, it may be possible that,
for a pair of speakers, both acoustic spectra be similar. On a mathe-
matical point of view, the question was asked for a 2-D resonator in
[46] and answered in [47] where authors found two different shapes

with the same acoustic spectra. For the pair “23-13”, fricatives ap-
pears to convey a significant part of the LR performance loss. This
could be explained by the use of a narrow band which exclude frica-
tive’s speaker-specific-cues in high frequencies. Another time, the
global tendencies are shadowing potential speaker-specific effects.
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Fig. 4. Stacked bar chart of relative CNON
llr for the 10 “worst”

speaker pairs, spki-spkj , in term of discrimination power (mean
CNON

llr =0.52).
5. CONCLUSION

This paper is dedicated to study the phonological content impact
on voice comparison process in order to prevent wrongful con-
victions. It uses an ASR system as measurement instrument and,
more particularly, the CNON

llr variations. We analyzed the influence
of 6 phonemic classes: oral vowel, nasal vowel, nasal consonant,
fricative, plosive and liquid using FABIOLE database, a corpora
with a large number of speech recordings per speaker. In a first
step, we investigated the impact of each phonemic class on speaker
discrimination performance measured by CNON

llr . Results showed
that the 6 phonemic classes appear to embed speaker discrimination
power. Moreover, a consistent variation of performance is observed
between the classes with different extent: Oral vowels first, followed
by nasals, are the most important classes conveying speaker specific
cues. Then, liquids, fricative and plosive. This outcome is quite
consistent between the 30 target speakers, with limited variations.
In a second step, we explored deeply the phonological impact by
focusing on speaker pairs. We proved that the vast majority of pairs
(more than 90%) present a very low CNON

llr (<0.01) while there
exist few pairs presenting a quite high CNON

llr which could reach
0.9. We showed that: (i) For the “best” discriminated pairs, all the
phonemic content still play a positive role in speaker discrimination.
(ii) For the “worst” speaker pairs, it appears that nasals have a neg-
ative effect and convey a significant part of LR performance loss.
This could be explained by the hypothesis of similarity of acoustic
spectra of nasal cavities, of the two speakers in question.
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