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ABSTRACT
This paper aims to motivate more research works on the de-
sign of zero-bit watermarking schemes by showing an up-
per bound of the performances that known solutions failed
to reach. To this end, an upper bound of error exponent char-
acteristic is derived by translating Costa’s rationale to zero-
bit watermarking with side information. Three schemes are
then considered: the dual-cone detection region originally
proposed by Cox et al. and improved in Merhav et al. pa-
pers, ISS (Improved Spread Spectrum), and ZATT (Zero At-
traction). It turns out that in certain conditions the latter per-
forms better than the first one, which questions the optimality
claimed Merhav et al. Nevertheless, the main conclusion is
that these schemes are in general far away from the upper
bound in the region of practical interest.

Index Terms— Watermarking, Hypotheses test, Error ex-
ponent

1. INTRODUCTION

In a zero-bit watermarking scheme, one is solely interested in
distinguishing watermarked from non watermarked content.
The embedding does not hide any message, and there is no
decoding. Zero-bit watermarking just embeds and detects a
mark. There has been some confusion about the terminology.
Some misused the term ‘one-bit’ [1, 2]: A ‘one-bit’ water-
marking scheme is when one detects and then decodes a mes-
sage of a single bit.

Zero-bit watermarking is a hypotheses test problem with
two specifities:

• Under hypothesis H0, the received signal is given by
Nature: it is a signal extracted from an original content
possibly corrupted by some noise.

• Under hypothesis H1, the received signal has been
modified by the embedding: it is a signal extracted
from a content with the addition of a watermark sig-
nal dependent on the host signal and a secret key, and
possibly corrupted by some noise.

There are two types of error: Detection of a mark whereas
the received signal has not been watermarked. This is a false

positive whose probability is denoted by Pfp. A false negative
misses the presence of the mark whereas the received signal
has been watermarked. Its probability is denoted by Pfn.

As in [1], we are interested in the error exponents, which
are the exponential decay rates of these probabilities as the
size n of the received signals goes to infinity:

Efp := lim
n→∞

− 1

n
logPfp, Efn := lim

n→∞
− 1

n
logPfn. (1)

This paper investigates the mapping Efn = F (Efp). These
exponents are non negative, and for a given setup and Efp, the
bigger Efn the better a watermarking scheme performs.

We focus on two points of the characteristic: the left and
the right endpoints. The graph of the function Efn = F (Efp)
starts on the left by the point (Efp, Efn) = (0, ELfn) where
ELfn := limEfp→0+ F (Efp). On the other hand, the graph ends
on the right at (Efp, Efn) = (ERfp , 0). Larger false positive
rates are achievable but then Efn = 0: Probability Pfn may
still vanish to zero but not exponentially as n→∞.
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Fig. 1. Comparison of the error exponent characteristics.
Setup: σX = 1, P = 0.1, σZ = 0.3. Lower and upper
bounds (8), ISS (9), ZATT (10), and Merhav et al. (17)
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2. UPPER AND LOWER BOUNDS

This section proposes lower and upper bounds of the charac-
teristicEfn = F (Efp) in the Gaussian setup. It is a pastiche of
Costa’s paper [3] and generalizes the study presented in [4].

A feature vector in Rn is extracted from the content. Vec-
tors x and r denote respectively the extracted feature from
an original content, so-called the host, and from the content
received by the detector. The embedder transforms x into
y by adding a watermark w: y = x + w(x). This vec-
tor depends on the host (for a side-informed watermarking
scheme) and on a secret key (not indicated to keep notations
simple). We consider a power constraint watermark prob-
lem where the energy of the watermark per sample is limited:
‖w(x)‖2/n ≤ P . An attack is modeled by the addition of a
noise vector z: r = y + z.

The theoretical setup models the host and noise vector by
random vectors X and Z distributed as Gaussian white sig-
nal: X ∼ N (0n, σ

2
XIn) and Z ∼ N (0n, σ

2
ZIn). Vector 0n

denotes the vector of n zero components, and In the iden-
tity matrix of size n. This stems into the following statistical
model of the received vector R:

H0 : R = X + Z, H1 : R = X + w(X) + Z (2)

2.1. Derivations of the error exponents

We resort to the classical derivation of the error exponents
(see for instance [5, Sec. 2.7]). It consists in pretending that
the detector knows the distributions of the received signal
R under both hypothesis. The optimal detector is then the
Neyman-Pearson test which compares the log likelihood ratio
s(R) to a threshold τ . The Chernoff bound provides inequal-
ities for both error probabilities via the cumulant-generating
function µn(t) := logE(ets(R)|H0). For instance, Pfp ≤
eµn(t)−tτ , ∀t > 0. The tightest bound is given for t s.t.
µ′n(t) = τ . A concentration inequality shows that this Cher-
noff bound is asymptotically tight as n→∞ in the Gaussian
setup so that:

Efp = lim
n→∞

−µn(t) + tµ′n(t)

n
, (3)

Efn = lim
n→∞

−µn(t)− (1− t)µ′n(t)

n
. (4)

2.2. Lower bound

The following presents a lower bound in the sense that a
skilled watermarker cannot do worse than designing an
embedder not taking into account the side information. In
other words, w(X) = w, a fixed secret reference sig-
nal s.t. ‖w‖2 = nP . For this additive spread spectrum
scheme, R ∼ N (0n, σ

2In) under H0 and R = N (w, σ2In)
under H1 with σ2 := σ2

X + σ2
Z . Easy calculation finds

µn(t) = nPt(t− 1)/2σ2 leading to:

(Efp, Efn) =
P

2σ2

(
t2, (1− t)2

)
, ∀t ∈ (0, 1) (5)

which can be rewritten as Efn = F(Efp, σ
2
X + σ2

Z) with

F(Efp, σ
2) :=

(∣∣∣√P/2σ2 −
√
Efp

∣∣∣
+

)2

(6)

and |a|+ := a if a ≥ 0 and 0 otherwise.

2.3. Upper bound

The upper bound is derived by giving a clear advantage to
the detector: it knows both X and w(X). Then, R − X ∼
N (0n, σ

2
ZIn) underH0 and R−X = N (w(X), σ2

ZIn) under
H1. Similar calculations end up with

(Efp, Efn) =
P

2σ2
Z

(
t2, (1− t)2

)
, ∀t ∈ (0, 1) (7)

which can be rewritten as Efn = F(Efp, σ
2
Z).

2.4. Conclusion

When side-information (i.e. the knowledge of the host) is
available at the embedder only, the scheme should perform
better or equal than a scheme without side-information. At the
same time, it should perform worse or equal than a scheme
with side-information at the embedding and the detection
sides. In other words, its characteristic function should lie in
between the two previous ones:

F(Efp, σ
2
X + σ2

Z) ≤ F (Efp) ≤ F(Efp, σ
2
Z). (8)

Surprisingly, this result is new as [4] derived similar
bounds only for one specific point of the characteristc: ELfn.

3. APPLICATION TO TWO SIMPLE SCHEMES

The previous study raises the question of achievability: is it
possible to design a scheme whose characteristic is close to
the upper bound? We first analyze two very simple schemes.

3.1. ISS (Improved spread spectrum)

The embedding reduces the interference with the host by cre-
ating w(x) = (α−λ(x>u))u, where u is a secret direction in
Rn with ‖u‖ = 1, and λ is the host rejection coefficient. The
power constraint imposes that α2 +λ2σ2

X ≤ nP . Asymptoti-
cally as n→∞, we can set λ = 1 so that α2 = nP−σ2

X > 0.
As the received signal is still Gaussian distributed under

both hypotheses, similar calculations give the following para-
metric definition of the characteristic: ∀t ∈ (0, 1)

(Efp, Efn) =
P

2σ2
X

ρ

(1 + tρ)2
(
t2(1 + ρ), (1− t)2

)
, (9)
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with the SNR ρ := σ2
X/σ2

Z . This characteristic function
tends to the upper bound as t → 0+ achieving the left
endpoint ELfn = P/2σ2

Z as claimed in [4]. But, it tends to
the lower bound as t → 1− reaching the right endpoint
ERfp = P/2(σ2

Z+σ2
X). This result is depicted in Fig. 1.

3.2. ZATT - Zero Attraction

We now consider the ZATT scheme [6, Sect. 3.3], for which
the derivation of the error exponents is simple and insightful.

The embedder cancels the k first components1 of x by
adding w(x) = −(x(1), · · · , x(k), 0, · · · , 0)>. This is pos-
sible if kσ2

X ≤ nP . We assume here that P < σ2
X , which

is relevant in most practical watermarking scenarios. Asymp-
totically, as n → +∞, k can go to infinity as well, scaling
as bnP/σ2

Xc. Under both hypotheses, the n − k last compo-
nents of R follow the same distribution. Therefore, they do
not contribute to error exponents. Under the Gaussian setup,
we obtain:

Efp =
P

2σ2
X

(
log (1 + tρ)− tρ

1 + tρ

)
,

Efn =
P

2σ2
X

(
log

1 + tρ

1 + ρ
+

(1− t)ρ
1 + tρ

)
. (10)

For any t ∈ (0, 1), the point of the characteristic (Efp, Efn)
tends to (+∞, log t − 1 + 1/t) when ρ → +∞, i.e. σ2

Z → 0.
Then, Efn can be set as big as possible by driving t close to 0.
This is not surprising: detecting the watermark iff r(1)2 = 0
gives a perfect test (i.e. Pfp = Pfn = 0) in the noiseless setup
where σ2

Z = 0. This even holds when n is finite provided that
n ≥ σ2

X/P . This scheme has little interest in practice, but it
stresses the fact that, under the noiseless setup, it is very easy
to achieve perfect performances.

In the noisy setup, the left and right endpoints are
achieved for t = 0 and t = 1 respectively:

ELfn =
P

2σ2
Z

(ρ− log(1 + ρ)) , (11)

ERfp =
P

2σ2
Z

(
log(1 + ρ)− ρ

1 + ρ

)
. (12)

This shows that ZATT fails reaching the upper bounds P/2σ2
Z

on both endpoints as soon as σ2
Z > 0. We will see that, despite

these shortcomings, ZATT is not devoid of interest.

4. MERHAV et al. APPROACH

Sabbag and Merhav [7] show that, under limited resources,
the optimal detector thresholds the absolute value of the co-
sine, i.e. the normalized correlation, between r and u. This

1To provide security, this is indeed done on k < n secret orthogonal
projections.

defines the acceptance region C as a dual hypercone of axis u
and angle β: The watermark is detected if

|r>u|√
n‖r‖

≥ cosβ. (13)

This theoretically justifies a long tradition in the history of
watermarking since the seminal paper of Cox et al. [8].

4.1. False positive error exponents

UnderH0, R has an isotropic distribution and the probability
of false alarm is given by Pfp = 1− Icos2 β(1/2; (n− 1)/2),
where Ix(a; b) is the incomplete beta function [9]. For a fixed
angle β, this yields the error exponent [7]:

Efp = − log(sinβ). (14)

This exponent is bigger as the aperture of the dual hypercone
is smaller. Indeed, angle β will play the role of the auxiliary
variable defining the parametric characteristic function.

4.2. False negative error exponent

Later on, Comesaña et al. show that the optimum embedding
creates y = a(x)x + b(x)u (see [10] for the expressions of
functions a and b), which provides in the ‘high SNR regime’
the following false negative exponent [10, Th.2]:

Efn = S(max{1, P/σ2
X cos2 β}), (15)

with S(x) := (x− 1− log x)/2 ≥ 0, ∀x > 0.

5. CRITICAL ANALYSIS

We now humbly criticize the work of [10]. We acknowledge
the remarkable quality of this work: the derivation of the false
negative error exponent is indeed very technical and much
more complicated than the easy schemes presented in Sec. 3.
However, there are two pitfalls in this article.

5.1. ‘High SNR regime’

The authors of [10] misuse the wording ‘high SNR regime’.
Parameter σZ is missing in (15). Indeed, this equation must
be understood as the limit of Efn when σZ → 0. Therefore,
this is a zero-order approximation of Efn in the ‘high SNR
regime’, or more rigorously it is the expression of Efn in the
noiseless scenario.

5.2. Optimality

The optimality of this scheme claimed in [10] is also arguable.
In the noiseless setup and if P < σ2

X , 0 < Efn < ∞ when
Efp ∈ [0,−1/2 log(1−P/σ2

X)). This means that, in this range,
both Pfp and Pfn vanish exponentially as n → ∞. However,
Sec. 3.2 shows that, under the same conditions, the ZATT
scheme provides a perfect test (Pfn = Pfp = 0). This holds
when n is finite provided that n ≥ σ2

X/P .
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5.3. Extensions

The journal version of this paper proves that the characteristic
of this scheme achieves the following right endpoint:

ERfp =
1

2
log

2σ2
X√

(σ2
X − P − σ2

Z)2 + 4σ2
Xσ

2
Z + (σ2

X − P − σ2
Z)
.

(16)
This complies with the result of [10]: if P < σ2

X and σZ =
0, then ERfp = −1/2 log(1 − P/σ2

X). Moreover, before this
endpoint, Efn is positive and can be bounded by:

Ēfn =

(
tan−1 β

√
σ2
Z + σ2

X sin4 β −
√
P − σ2

X cos4 β

)2

2σ2
Z

.

(17)
It appears that, as β → π/2 (i.e. Efp → 0), Efn → Ēfn, which
in turn converges to P/2σ2

Z : the left endpoint of this scheme
achieves the upper bound (8). On the other hand, Ēfn cancels
when P = σ2

X cos2 β + σ2
Z tan−2 β, which gives back (16).

6. COMPARISON

We make a comparison encompassing the lower and upper
bounds (8), ISS (Sect. 3.1), ZATT (Sect. 3.2), and the double
hypercone scheme (Sect. 4).

Fig. 1 gives an overview of the situation. Note first that
this figure is given for a ‘practical’ setup of robust watermark-
ing where P < σ2

Z < σ2
X . We clearly see that these schemes

reach high Efn, close to the upper bound (8), but only on the
left endpoint (i.e. for very small values of Efp). On the right
endpoint (i.e. high Efp for small values of Efn), they com-
pletely fail getting closer to the upper bound.

We believe that this remains the major issue of robust
zero-bit watermarking. As far as we know, no watermark-
ing scheme achieves the upper bound on the right hand side
of the characteristic. This is all the more important because
this side is the most relevant in practice. In many applica-
tions, the risk of a false positive is far bigger than the risk of a
false negative. In DRM, for instance, a false positive amounts
to accuse an innocent user whereas a false negative results in
failing to capture a dishonest user. The requirements usually
set the probability of false positive to extremely weak level.
Consequently we seek high values of Efp.

Secondly, the scheme proposed by Merhav and co-authors
outperforms ISS by a tiny margin in this setup. Indeed, ZATT
performs better at high Efp. This somewhat calls in question
the optimality claimed in [7, 10]. Yet, the complexity of de-
tectors is in O(n) except for ZATT in O(kn).

We now give a closer look to the endpoints ELfn and ERfp
plotted as functions of σZ in Fig. 2. For the left endpoint
ELfn, Fig. 2 (top) shows that the upper bound, ISS and Mer-
hav’s scheme are superposed. ZATT’s endpoint is lower es-
pecially at high σZ . Indeed, its endpoint can be lower than
P/2(σ2

X+σ2
Z), when σ2

Z ≥ 2/3σ2
X .
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Fig. 2. Comparison of the endpoints. Setup: σX = 1, P =
0.1. ELfn (top) and ERfp (bottom) as functions of σZ .

As for the right endpoint ERfp , the other schemes perform
like the lower bound (or slightly better), while the superior-
ity of ZATT is remarkable at low σZ . Again, at σZ = 0, it
provides a perfect test for k = 1, i.e. under limited resources.
Yet, the endpoint of ZATT goes below than the lower bound
when σ2

Z ≥ σ2
X/4 (approximatively), which is still a useful

range in practice.

7. CONCLUSION

Fig. 2 summarizes the paper:

• The ZATT scheme challenges the optimality claimed
in [7, 10] even in the ‘high SNR regime’ and unders
limited resources. It achieves a lower left endpoint but
a much higher right endpoint.

• While these schemes achieve the upper bound at the left
endpoint, the mismatch at the right endpoint is large.
This is critical because this region matters in practice.

Contrary to channel capacity with side information [3], the
optimal characteristic of zero-bit watermarking remains un-
known.
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