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ABSTRACT

The impressive growth of secrecy-sensitive wireless appli-
cations calls for methods to complement traditional cryp-
tography. In particular, physical-layer security is attractive
to enhance communication confidentiality by exploiting the
characteristics of the wireless environment. Recent works on
information-theoretic wireless network secrecy have shown
how to exploit interference to enhance the level of information
confidentiality for node spatial distribution according to a ho-
mogeneous Poisson point process. We propose a framework
for design and analysis of inhomogeneous Poisson networks
with maximum secrecy rate. We determine the effects of
the inhomogeneous node spatial distribution on the secrecy
metrics, which provide guidelines for network design.

Index Terms— Wireless networks, maximum secrecy
rate, inhomogeneous Poisson point process, fading channels.

1. INTRODUCTION

Wireless network secrecy is essential for numerous emerging
applications [1]. Due to the broadcast nature of the wireless
channel, it is easy for an eavesdropper to intercept the confi-
dential information.

The works of Shannon [2] and Wyner [3] establish the
foundation of information-theoretic secrecy. Such works dis-
close the possibility of transmitting secret information with
perfect confidentiality if the transmission rate is below the se-
crecy capacity of the channel.

Previous works addressing information-theoretic secrecy
use stochastic geometry and, in particular, homogeneous
Poisson point processes (HPPPs) to model the stochastic net-
work and devise interference engineering strategies (IESs)
for enhanced secrecy [4–13]. The IESs enables legitimate
users to exploit the network interference to undermine the
reception of unwanted listeners.
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In scenarios of practical interest, the homogeneous as-
sumption can be unrealistic [14–17]. Other stationary point
processes have been used to consider attraction and repulsion
between terminals [18–21]. Such point processes enable the
analysis at the typical point of the network, but don’t reveal
the effect of high spatial variability of the node distribution
on the local performance.

To analyze the performance of secure networks under
more generic setups, we introduce inhomogeneous Poisson
networks and analyze the spatial variability of the maximum
secrecy rate (MSR), i.e., the maximum information rate that
can be sent over a channel without the occurrence of an in-
formation leakage. The proposed analysis is based on the
interference and signal-to-interference ratio (SIR) characteri-
zations and shows the density of the MSR as a surface on the
Euclidean plane rather than evaluating a single value at the
typical point. We also define the network secrecy rate (NSR)
to describe the overall network secrecy.

This paper develops a framework for design of wireless
networks with secrecy accounting for 1) inhomogeneous node
spatial distribution, 2) the wireless medium, and 3) the aggre-
gate interference. The analysis is corroborated by simulations
in different network scenarios.

2. NETWORK MODEL

Consider a finite heterogeneous network composed of the
legitimate transmitters (LTs), legitimate receivers (LRs), in-
tentional interferers (IIs), and eavesdropping receivers (ERs).
We denote locations on a bounded region A of the Euclidean
plane by x ∈ A ⊂ R2.

The LTs and the LRs exchange confidential informa-
tion through the wireless medium and are spatially dis-
tributed according to the inhomogeneous Poisson point pro-
cesses (IPPPs) Πtx and Πrx with intensity functions λtx(x)
and λrx(x), respectively. The ERs are malicious nodes that
attempt to intercept the confidential information; they are de-
scribed by the IPPP Πex with intensity function λex(x). The
IIs introduce additional interference in the network to reduce
the listening capability of the ERs and are modeled by the
IPPP Πjx with intensity function λjx(x).
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For the sake of simpicity, the interferers affecting the
LRs and the ERs are described by Πir and Πie with intensity
functions λir(x) = λtx(x) and λie(x) = λtx(x) + λjx(x),
respectively. Further explanations on techniques to impair
eavesdropping channels without damaging legitimate ones
are given in [4, 8, 12].

In the following, we characterize statistically the aggre-
gate interference and the received SIR, in order to analyze the
spatial behavior of the MSR of an inhomogeneous network.

3. INTERFERENCE CHARACTERIZATION IN

INHOMOGENEOUS POISSON NETWORKS

The stochastic behavior of the aggregate interference in a
homogeneous Poisson infinite network is analyzed in [22],
where the interference distribution is the same at each loca-
tion of the network. This section presents the distribution
of the aggregate interference in an inhomogeneous Poisson
finite network. We conduct an analysis conditional to the
legitimate transmitter location xj .

Consider the aggregate interference power at the receiver
in xk ∈ Πrx while the LT is located at xj ∈ A, i.e.,

ij,k =
∑

xq∈Πir

hq,kr
−2b
j,k (1)

where hq,k are the Gamma distributed fading power coeffi-
cients with mean 1 and shape parameter m, rq,k = ||xq − xk||
is the Euclidean distance between the nodes at xq and xk, the
large-scale path loss model is assumed to be r−2b over dis-
tance r where b is the amplitude path loss exponent, the ref-
erence power is 1 for every transmitting node.

The distribution of the aggregate interference ij,k is
specified by the probability generating functional of a Pois-
son point process (PPP) [23], which allows to evaluate the
Laplace transform of the interference at a given location as

Lij,k|xk(s)=exp

{

−

∫

A

(

1− Lh

(

−s
∥x−xk∥2b

))

λir(x)dx

}

(2)
where Lh(·) is the well-known Laplace transform of the chan-
nel coefficients. Note that the distribution of the interference
is here translation-variant unlike the homogeneous case [22].
In the next section we characterize the received SIR at the
selected receiver.

4. STATISTICAL CHARACTERIZATION OF SIR

Consider a system in an interference-limited condition. The
performance is driven by the SIR

zj,k =
|hj,k|2r

−2b
j,k

ij,k
. (3)

Hereafter we extend the analysis carried out in [13] to inho-
mogeneous networks.

4.1. Randomly Selected Receiver

In the Nakagami-m fading case, the channel power gain is
Gamma distributed. Hence the Laplace transform of the inter-
ference can be exploited to evaluate the cumulative distribu-
tion function (CDF) of the SIR zj,k. Following steps similar
to those of Section V-A and Appendix D in [13], we obtain

Fzj,k(z)=1−
m−1
∑

l=0

(−1)l

l!

[

d(l)

dsl
Exk

{

Lij,k|xk

(

sm r
2b
j,kz

)

}

]

s=1

(4)
where s ∈ C, Lij,k|xk (·) is computed by (2), the expectation
is obtained with respect to (w.r.t.) fxk(xk) = λrx(xk)/Λrx(A)

and Λrx(A) =

∫

A
λrx(x)dx is the intensity measure of Πrx

over A. Note that, in general, the integral in (2) cannot be
computed in closed form. Hence Fzj,k(z) in (4) must be com-
puted by numerically.

4.2. Maximum SIR Legitimate Receiver

This section analyzes the distribution of the received SIR
when the transmitter selects the receiver with the maximum
SIR. We account for two network scenarios: the full inho-
mogeneous network (FIN) and the partial inhomogeneous
network (PIN). A case study is also presented.

Consider an LT in xj that selects the LR with the highest
SIR among those in a bounded set ARj

⊂ R2. Define xk̆

as the random location of the maximum SIR receiver where
k̆ ! arg max

k : xk∈Πrx

{zj,k}.

4.2.1. Maximum SIR Receiver CDF for the FIN

Let Πtx and Πrx be two IPPPs described by λtx(x) and λrx(x),
respectively. Let nARj

be the number of LRs selectable by
xj . If nARj

= 0, the conditional CDF of zj,k̆, i.e., the
SIR at the receiver with maximum SIR, is assumed to be
Fz

j,k̆
|nARj

(z) = 1; if nARj
> 0, then such a CDF is

Fz
j,k̆

|nARj

(z) =

nARj
∏

k=1

Fzj,k(z) =
[

Fzj,k(z)
]nARj . (5)

The unconditional CDF is then obtained by marginalizing (5)
w.r.t. the Poisson random variable nARj

with mean Λrx(ARj
)

as

Fz
j,k̆

(z) = e
[

Fzj,k
(z)−1

]

Λrx(ARj
). (6)

4.2.2. Maximum SIR Receiver CDF for the PIN

Let Πtx and Πrx be an IPPP and an HPPP described by λtx(x)
and λrx, respectively. Consider that the LT selects a receiver in
ARj

= Bxj
(rM), i.e., a ball in R2 centered in xj with max-

imum radius rM. Hence, the polar coordinates of a generic
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Lij,k|rj,k,θj,k(s) = exp

{

−

∫

A

(

1− (((u−uj−rj,k cos θj,k)
2+(v−vj−rj,k sin θj,k)

2))2b

s+(((u−uj−rj,k cos θj,k)2+(v−vj−rj,k sin θj,k)2))2b

)

Λtx(A)
2πσ2 e−

u2+v2

2σ2 dudv

}

(8)

receiver w.r.t. the transmitter are independent random vari-
ables (RVs) with uniform distribution, i.e., r2j,k ∼ U(0, r2M],
θj,k ∼ U [0, 2π). Fz

j,k̆
(z) is obtained by (6) with Λrx(ARj

) =

λrxπr2M, where Fzj,k(z) is computed following the steps of

Section 4.1 and by specializing (4) with Exk

{

Lij,k|xk (·)
}

=

Erj,k

{

Eθj,k

{

Lij,k|rj,k,θj,k(·)
} }

.

4.2.3. Case Study (Gaussian PIN in Rayleigh Fading)

Consider the scenario described in Section 4.2.2 with Rayleigh
fading (m = 1) and Gaussian intensity function with vari-
ance σ2 on each direction for the IPPP describing the LTs’

locations, i.e., λtx(x) = Λtx(A)
2πσ2 e−

u2+v2

2σ2 where u, v are the
Cartesian coordinates of x. The CDF of zj,k̆ is given by (6)

with Λrx(ARj
) = λrxπr2M where

Fzj,k(z) = 1− Erj,k

{

Eθj,k

{

Lij,k|rj,k,θj,k

(

smr
2b
j,kz

)}}

(7)

where Lij,k|rj,k,θj,k (·) is given by (8), r2j,k ∼ U(0, r2M], and
θj,k ∼ U [0, 2π).

The analysis of the eavesdropping link is analogous to the
one of the legitimate link. It is sufficient to substituteΠex, λex,
Πie, and λie, for Πrx, λrx, Πir, and λir, respectively.

5. SECRECY METRICS

This section defines local and global secrecy metrics for in-
homogeneous networks in an interference-limited condition.

Recall the definition of the MSR1 of a link with the LT
in xj , conditional on the node locations and the channel re-
alizations [13], and for maximum SIR destination selection
as

Rj,k̆,l̆ =
[

c(zj,k̆)− c(zj,l̆)
]+

(9)

where c(z) ! log2(1+z) [bit/s/Hz] is the conditional capac-
ity with Gaussian signaling and [ · ]+ ! max{· , 0}.

We define the local network secrecy rate density (LNSRD)
at xj ∈ A as

ρj(xj) ! λtx(xj)Rj (10)

where Rj ! Ej

{

Rj,k̆,l̆

}

is the average MSR w.r.t. all the
channels and point configurations of a link having the LT at
xj . The LNSRD is measured in [cib/s/Hz/m2] and repre-
sents the secrecy rate per unit area in xj . The definition makes
sense; in fact, the per-link average MSR Rj is weighted by the
density of link in xj .

1The MSR is measured in measured in [cib/s/Hz] and represent the max-
imum confidential information rate that can be employed by an LT while
satisfying the condition of perfect secrecy [2, 3].

Note that Eq. (10) shows that local variations of LNSRD
are due to the direct dependency on λtx(xj) and the implicit
dependency on intensity functions λtx(x), λrx(x), λjx(x), and
λex(x) through Ej {·}.

The expectation Ej{·} is computed over zj,k̆ and zj,l̆,
which are assumed as stochastically independent, as

Rj =

∫ ∞

0
c(z2)Fz

j,l̆
(z2)fzj,k̄(z2)dz2

−

∫ ∞

0

∫ z2

0
c(z1)fz

j,l̆
(z1)fzj,k̄(z2)dz1dz2 . (11)

Now, let us consider the spatial average of Rj , i.e.,

R !

∫

A
Rj(x)fxj (x)dx =

1

Λtx(A)
Rns . (12)

The global metric associated with the LNSRD is the NSR

Rns !

∫

A
ρj(x)dx (13)

which represents the total secrecy rate over A, is measured in
[cib/s/Hz], and is evaluated by its pointwise density ρj(x).

6. NUMERICAL RESULTS

This section presents numerical results from different network
scenarios to reveal the influence of the inhomogeneous spatial
distributions on the secrecy metrics as well as to highlight its
spatial variations and their driving features.

Consider a circular region A with maximum radius Rmax.
The four PPPs Πtx, Πrx, Πjx, and Πex (in this given order)
can be homogeneous (H) or inhomogeneous (I) in the fol-
lowing scenarios: IIHH, IIII, IIHI, IHIH, HHIH, HHHH, and
HHII. For simplicity, we consider Gaussian intensity func-
tions with variance σ2 centered in the origin of A (isotropic
problem). For each network, the mean number of points over
A is taken such that satisfies Λ!(A) = α!λh|A| where " =
{tx, rx, jx, ex}, λh is the intensity of a reference HPPP, and
α! is a scaling factor.

Fig. 1 shows ρj(xj) as a function of the distance ||xj || of
the transmitter from the origin. From a comparative analysis
of the different scenarios we obtain the following insights.

The intensity function of LTs shapes the performance’s
curve. Even if the average MSR per link is low, in the high

density (HD) region around the origin, there are several LTs
per unit area that carry a non-zero secrecy rate. Conversely,
the scarcity of transmitters in the low density (LD) region at
the Gaussian tail forces a performance decay.
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Fig. 1: LNSRD against the distance ||xj || in different scenar-
ios with Rmax = 15 [m], λh = 1 [node/m2], m = 1, b = 2,
αtx = αrx = αjx = αex = 0.5, and σ = 3 [m].

Table 1: NSR [cib/s/Hz] values for scenarios of Fig. 1.

IIHH IIII IIHI IHIH HHIH HHHH HHII

3775.5 3080.1 1662.8 813.2 824.6 787.1 816.3

The scenarios in which LTs and LRs are both inhomo-
geneous show the best performance. The decay in the LD
region does not heavily penalize the NSR (see Table 1). In
the HD region, the high availability of LRs decreases the av-
erage internode distance of legitimate links, i.e., rj,k̆ . Hence
the capacity of the legitimate link, which drives the achiev-
able MSR, rises. Note that the NSR in the HHHH scenario is
outperformed by the one in the IIHH, IIII, and IIHI scenarios
by 480%, 390%, and 210%, respectively.

The effect of inhomogeneous IIs in the HD region is
stronger in scenarios where LTs and LRs are both inhomo-
geneous. In fact, when the capacity of the legitimate link is
high, it is worth investing resources in impairing the eaves-
dropping link capacity with additional interference (see IIHI
and IIII in Fig. 1).

In regions where ERs are dense, they have a good channel
capacity on average. Hence, the achievable capacity gap in (9)
is small. In those regions the effect of additional interference
is very little (see HHII in Fig. 1).

Dense IIs cannot drive a significative increase in the
achievable performance by themselves because they affect
just eavesdropping link capacities. Hence the performance of
the HHIH setting just slightly fluctuates around the one of the
HHHH setting.

Fig. 2 shows ρj(xj) as a function of xj for different vari-
ances σ2 in the IIII scenario for inactive IIs. Table 2 shows
that smaller variances improve the overall performance be-
sides the performance loss in the sparse region (a reduction of
67% of the variance the NSR increase by 150%).

||xj || [m]

ρ j
(x

j
)
[c

ib
/s
/H

z/
m

2
]

0 3 6 9 12
0

8

16

24

σ = 3

σ = 2.5

σ = 2

Fig. 2: LNSRD against the distance ||xj || for different vari-
ances σ2, Rmax = 15 [m], λh = 1 [node/m2], m = 1, b = 2,
αtx = αrx = 0.5, αjx = 0, and αex = 0.1.

Table 2: NSR [cib/s/Hz] values for scenarios of Fig. 2.

σ=3 σ=2.5 σ=2

3595.1 4306.5 5385.1

Note that the presented cases studies are designed to
highlight the diverse behavior of secrecy metrics in corre-
spondence of high density or sparsity of any of the four
networks; hence the case studies are simple and insightful
but also, to some extent, artificial. In practical applications,
variables like different antennas’ gain, number of antennas
in MIMO receivers (and possibility to perform beamform-
ing), and more severe assumptions about the eavesdroppers’
capabilities should be taken into account. Nevertheless, the
take-out messages about the baseline features of inhomoge-
neous networks still hold.

7. CONCLUSION

This paper develops a framework for the analysis of wire-
less networks with intrinsic secrecy to inhomogeneous Pois-
son networks. Such a framework accounts for the node spa-
tial distribution, wireless environment, and aggregate inter-
ference. We characterized the distribution of the aggregate
interference and of the received SIR. Furthermore, we de-
fined the LNSRD, a new metric to reveal the effects of the
variability of node distributions, and the NSR to describe the
overall secrecy performance of a network. By the analysis of
several network scenarios, we found that the availability of
receivers along with the integration of several low-rate con-
fidential communications are the key enabler for confidential
communications. We point out for a future research smart
routing techniques, which we envision to be a method to ob-
tain secrecy in multi hop ad-hoc networks.
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