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ABSTRACT

In a time-division duplex (TDD) multiple antenna system,
the channel state information (CSI) can be estimated using
reverse training. A pilot contamination (spoofing) attack oc-
curs when during the training phase, an adversary also sends
identical training (pilot) signal as that of the legitimate re-
ceiver. This contaminates channel estimation and alters the le-
gitimate beamformimg design, facilitating eavesdropping. A
recent approach proposed superimposing a random sequence
on the training sequence at the legitimate receiver and then
using the minimum description length (MDL) criterion to de-
tect pilot contamination attack. In this paper we augment this
approach with joint estimation of both legitimate receiver and
eavesdropper channels, and secure beamforming, to mitigate
the effects of pilot spoofing. The proposed mitigation ap-
proach is illustrated via simulations.

Index Terms— Physical layer security, pilot spoofing at-
tack, active eavesdropping, secure beamforming.

1. INTRODUCTION

Consider a three-node time-division duplex (TDD) multiple
antenna system, consisting of a multi-antenna base station Al-
ice, a single antenna legitimate user Bob, and a single an-
tenna eavesdropper Eve. Alice designs its transmit beam-
former based upon its channel to Bob for improved perfor-
mance. In a TDD system, the downlink and uplink channels
can be assumed to be reciprocal. Therefore, Alice can acquire
the channel state information (CSI) regarding Alice-to-Bob
channel via reverse training during the uplink transmission.
Bob sends pilot (training) signals to Alice during the training
phase of the slotted TDD system. If Eve attacks the channel
training phase by transmitting the same pilot sequence dur-
ing the training phase, the CSI estimated by Alice then is a
weighted sum of Bob-to-Alice and Eve-to-Alice CSIs. Con-
sequently the beamformer designed on this basis will lead to
a significant information leakage to Eve. This is an example
of a pilot contamination attack [1, 2].

This issue of pilot contamination attack was first noted in
[1] where the focus is on enhancing eavesdropper’s perfor-
mance. Several approaches are discussed in [2, 3, 4, 5] for
detection of the attack assuming a TDMA uplink requiring
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separate time slots for each user Bob. In [6] an SDMA up-
link was considered to allow for simultaneous transmission
of training from Bobs.
Relation to Prior Work: Approaches of [3, 5] require

a separate secure channel from Alice-to-Bob (two-way train-
ing) to work. We only need one-way reverse training in this
paper. Refs. [2, 4, 6] deal only with attack detection, not its
mitigation. In this paper we augment the approach of [4] with
joint estimation of both legitimate receiver and eavesdropper
channels, and secure beamforming, to mitigate the effects of
pilot spoofing. Our set-up (and that of [2, 3, 4, 5, 6]) is differ-
ent from the jamming scenarios considered in [7] (and others).
Here Eve’s objective is to make Alice replace Alice-to-Bob
channel with Alice-to-Eve channel, whereas pilot jamming of
[7] aims to degrade overall system performance.
Notation: Superscripts (.)∗, (.)⊤ and (.)H represent com-

plex conjugate, transpose and complex conjugate transpose
(Hermitian) operation, respectively, on a vector/matrix. The
notation E{.} denotes the expectation operation, C the set of
complex numbers, IM anM ×M identity matrix, 1{A} is the
indicator function. The notation x ∼ Nc(m,Σ) denotes a ran-
dom vector x that is circularly symmetric complex Gaussian
with mean m and covariance Σ.

2. SYSTEMMODEL AND BACKGROUND

We follow the system model of [2, 3, 5, 4]. Let st(n), 1 ≤
n ≤ T , denote the training sequence of length T time sam-
ples. Consider a flat Rayleigh fading environment with Bob-
to-Alice channel denoted as hB =

√
dB h̃B ∈ C

Nr×1 and
Eve-to-Alice channel denoted as hE =

√
dE h̃E ∈ C

Nr×1,
where real scalars dB and dE represent respective path loss
attenuations and h̃B ∼ Nc(0, INr

) and h̃E ∼ Nc(0, INr
)

represent small-scale fading. Let PB and PE denote the aver-
age training power allocated by Bob and Eve, respectively. In
the absence of any transmission from Eve, the received signal
at Alice during the training phase is given by

y(n) =
√

PB hBst(n) + v(n) (1)

where additive noise v(n) ∼ Nc(0, σ
2
vINr

) and we normalize

T−1
∑T

n=1 |st(n)|2 = 1 (e.g., take |st(n)| = 1). When Eve
also transmits (Eve’s pilot contamination attack), the received
signal at Alice during the training phase is

y(n) =
(√

PB hB +
√
PE hE

)
st(n) + v(n). (2)

2097978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



In case of Eve’s attack, based on (2), Alice would estimate√
PB hB +

√
PE hE as Bob-to-Alice channel, instead of√

PB hB based on (1).
How to detect Eve’s attack based only on the knowledge

of st(n) and y(n), is addressed in [4] where a fraction β of
the training power PB at Bob is allocated to a scalar ran-
dom sequence sB(n) (zero-mean, i.i.d., normalized to have

T−1
∑T

n=1 |sB(n)|2 = 1, finite alphabet: BPSK or QPSK,
e.g.) to be transmitted by Bob along with (superimposed on)
st(n). That is, instead of

√
PBst(n), Bob transmits (0 ≤ β <

1, n = 1, 2, · · · , T )

s̃B(n) =
√
PB(1− β) st(n) +

√
PBβ sB(n). (3)

The sequence {sB(n)} is unknown to Alice (and to Eve) and
it can not be replicated in advance as it is a random sequence
generated at Bob. However, Alice knows that such {sB(n)}
is to be expected in y(n).

Now we have the following two hypotheses H0 (no at-
tack) andH1 (attack present) for the received signal at Alice:

H0 : y(n) = hB s̃B(n) + v(n)
H1 : y(n) = hB s̃B(n) +

√
PE hEst(n) + v(n).

(4)

Define the correlation matrix of measurements as (i = 0, 1)

Ry,i = T−1
T∑

n=1

E
{
y(n)yH(n)

∣∣Hi

}
(5)

and the correlation matrix of source signals as (i = 0, 1)

Rs,i = T−1
T∑

n=1

E
{
[y(n)− v(n)][y(n)− v(n)]H

∣∣Hi

}
.

(6)
Then we have

Ry,i = Rs,i + σ2
vINr

, i = 0, 1. (7)

It is shown in [4] that rank(Rs,0) = 1 and rank(Rs,1) = 2.
Thus, introduction of {sB(n)} by Bob leads to signal sub-
space of rank 2 in the presence of Eve’s attack. If β = 0, then
rank(Rs,1) = 1. [4] exploits the MDL estimator of the signal
subspace dimension d ([8, 9, 10]) based on the eigenvalues
of the estimated data correlation matrix to detect spoofing at-
tack; it does not address attack mitigation. Note that if Eve
also adds a random sequence to its pilot, rank(Rs,1) = 2. The
attack will be detected but our mitigation approach will not
apply.

3. JOINT CHANNEL ESTIMATION

If the MDL method indicates presence of attack, Alice pro-
ceeds to jointly estimate the channels to Bob and Eve.

3.1. No Attack

If the MDL method indicates absence of any attack, Alice
proceeds to initially estimate the channel using (4) underH0,

knowledge of {st(n)} and the least-squares method. This ap-
proach treats {sB(n)} as interference. An obvious solution
is to perform iterative channel estimation via a linear mini-
mum mean-square error (MMSE) equalizer to estimate and
decode (quantize) self-contamination sB(n) and then use the
decoded sB(n) in conjunction with st(n) as pseudo-training.
For details, see [4, Sec. IV].

3.2. Under Attack

3.2.1. Projection Orthogonal to Training

Stack P consecutive samples of ℓth component yℓ(n) of y(n)
into a column:

yℓ(1) · · · yℓ(P )︸ ︷︷ ︸
yℓ(1)

yℓ(P + 1) · · · yℓ(2P )︸ ︷︷ ︸
yℓ(2)

· · ·

Define vℓ(m) from vℓ(n), the ℓth component v(n) in a similar
fashion. Let št = [st(1) st(2) · · · st(P )]⊤ and šB(m) =
[sB(1 + (m− 1)P ) · · · sB(P + (m− 1)P )]⊤. Then in the
presence of self-contamination and eavesdropper, we have

yℓ(m) =
(√

PB(1− β)hB,ℓ +
√
PE hE,ℓ

)
št

+
√

PBβ hB,ℓšB(m) + vℓ(m)

where hB,ℓ is the ℓth component of hB , and similarly for

hE,ℓ. Let P⊥
št

= projection orthogonal to the subspace

spanned by št. Then P⊥
št
yℓ(m) has no contribution from

training st(n). “Reshape” P⊥
št
yℓ(m) into a row vector along

time and put all components ℓs together. Then the so “pro-
jected” y(n) lacks st(n) but has the effect of hB and sB(n)
which can be used to estimate hB up to a scale factor via
eigen-decomposition. We elaborate on this approach in what
follows.

We have

P⊥
št

= IP − P−1štš
H
t ∈ C

P×P

where we have used šHt št = P . Since rank(P⊥
št
) = P − 1, its

SVD is

P⊥
št

= U1Σ1V
H
1 , U1,V1 ∈ C

P×(P−1)

where Σ1 is diagonal with positive singular values along its
diagonal. Consider

E{[P⊥
št
vℓ(m)][P⊥

št
vℓ(m)]H} = U1Σ1V

H
1 (σ2

vIP )V1Σ1U
H
1

= σ2
vU1Σ

2
1U

H
1 ∈ C

P×P

Noting that Σ−1
1 UH

1 P⊥
št

= VH
1 , consider the reduced dimen-

sion
vℓr(m) := VH

1 v
ℓ(m) ∈ C

P−1.

Then we have E{vℓr(m)(vℓr(m))H} = σ2
vIP−1. Note that

vℓr(m1) and v
ℓr(m2) are independent for m1 6= m2. Sim-

ilarly, define the reduced dimension projected observations
and contamination sequence

yℓr(m) := VH
1 y

ℓ(m), šrB(m) := VH
1 šB(m).
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Then we have form = 1, 2, · · · , T/P ,

yℓr(m) =
√
PBβ hB,ℓš

r
B(m) + vℓr(m).

Now reshape yℓr(m), m = 1, · · · , T/P , with T/P an
integer, into a row of scalars ỹℓ(n), n = 1, 2, · · · , (T/P )(P−
1), using the correspondence

ỹℓ(1) · · · ỹℓ(P − 1)︸ ︷︷ ︸
yℓr(1)

ỹℓ(P ) · · · ỹℓ(2(P − 1))︸ ︷︷ ︸
yℓr(2)

· · ·

Similarly define ṽℓ(n) from v
ℓr(m), m = 1, · · · , T/P , and

similarly construct s̃B(n) from šrB(m). Then ỹ(n) ∈ C
Nr

with ℓth component ỹℓ(n), satisfies

ỹ(n) =
√

PBβ hB s̃B(n) + ṽ(n). (8)

In the above model {ṽ(n)} is i.i.d. zero-mean complex Gaus-
sian with covariance σ2

vIP−1 and similarly s̃B(n) is uncorre-
lated zero-mean sequence with E{|s̃B(n)|2} not a function of
n (follows just as the properties of ṽ(n)).

3.2.2. Channel Estimation

Consider (8) with n = 1, 2, · · · , nb(P − 1), where nb =
T/P= an integer. Then with nb(P − 1) =: T ′, as in (5),

Rỹ =
1

T ′

T ′∑

n=1

E{ỹ(n)ỹH(n)} = βPBhBh
H
B + σ2

vINr

where E{|sB(n)|2} = 1 = E{|s̃B(n)|2}. Hence we esti-
mate hB up to a complex constant as the unit norm eigen-

vector v1 corresponding to the largest eigenvalue of R̂ỹ =

(1/T ′)
∑T ′

n=1 ỹ(n)ỹ
H(n). Since hB ≈ cv1 for some com-

plex c, we pick c to minimize

1

T

T∑

n=1

‖y(n)− cv1
√

(1− β)PBst(n)‖2,

leading to the solution

ĉ =
1√

(1− β)PBT

T∑

n=1

(vH1 y(n))s
∗
t (n).

Then we have the estimate of hB as

ĥB = ĉv1. (9)

For “large” T , we have v1 = hB/‖hB‖ and

lim
T→∞

ĉ = vH1 hB +

√
PE

PB(1− β)
vH1 hE .

Using y(n) =
(√

PB(1− β) hB +
√
PE hE

)
st(n)+√

PBβ hBsB(n)+v(n) underH1, we estimate the composite

channel hc :=
√

PB(1− β) hB+
√
PE hE using the training

sequence st(n) and least-squares, as

ĥc =
1

T

T∑

n=1

y(n)s∗t (n). (10)

This an unbiased estimator of hc. Using (9) and (10), we have
the estimate of Eve’s channel (with unknown

√
PE part of the

estimate) as

ĥE = ĥc −
√

PB(1− β)ĥB . (11)

4. MATCHED FILTER BEAMFORMING

Let {sA(n)}, E{|sA(n)|2} = 1, denote the scalar information
sequence of Alice intended for Bob, and let w ∈ C

Nr de-
note the unit norm beamforming vector of Alice. Then Alice
transmits

√
PAw sA(n) where PA is the transmit power. The

received signals at Bob and Eve are given, respectively, by

yB(n) =
√

PAh
⊤
Bw sA(n) + vB(n) (12)

yAE(n) =
√
PAh

⊤
Ew sA(n) + vE(n), (13)

where we have used channel reciprocity, vE(n) ∼ Nc(0, σ
2
E)

and vB(n) ∼ Nc(0, σ
2
B) are additive white Gaussian noise

at Eve’s and Bob’s receivers. For MF reception at Bob, Al-
ice should pick w as h∗B/‖hB‖ if hB is known [11, 12], but
instead uses the estimated channel to pick

w∗ = ĥ
∗

B/‖ĥB‖. (14)

The choice w = h∗B/‖hB‖ maximizes the SNR at Bob since

|h⊤Bw| ≤ ‖hB‖ ‖w‖ with equality iff w = ch∗B for some con-
stant c.

The SNRs at Bob and Eve, respectively, are SNRB =
PA|h⊤Bw∗|2/σ2

B , SNRE = PA|h⊤Ew∗|2/σ2
E . If a Gaussian

codebook is used for {sA(n)}, the achievable rates at Bob
and Eve, respectively, areRB = log2 (1 + SNRB) andRE =
log2 (1 + SNRE) and the secrecy rate at Bob is

RB,sec = max (RB −RE , 0) . (15)

In the presence of Eve with channel hE , the beamformer w
may be picked to maximize RB,sec. By [13, Theorem 2],
the optimal beamformer w∗ is given by the (unit-norm) gen-
eralized eigenvector corresponding to the largest generalized
eigenvalue of the matrix pair

(
INr

+ h∗Bh
⊤
B/σ

2
B , INr

+ h∗Eh
⊤
E/σ

2
E

)
. (16)

Under high SNR, the above solution approaches the solution
to the optimization problem [13, Cor. 1]

maxw |h⊤Bw| subject to h⊤Ew = 0, ‖w‖ = 1.

The solution to this optimization problem is given by

w∗ =

(
INr

− h∗Eh⊤E/‖hE‖2
)
h∗B

‖
(
INr

− h∗Eh⊤E/‖hE‖2
)
h∗B‖

. (17)
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In practice, we replace hB and hE with their estimates.
The constraint h⊤Ew = 0 implies that w lies in a sub-
space orthogonal to h∗E , i.e., for some w0, w = P⊥

h∗
E

w0 =
(
INr

− h∗Eh⊤E/‖hE‖2
)
w0. With h̃B := (P⊥

h∗
E

)⊤hB , |h̃
⊤

Bw0|
is maximized w.r.t. w0, ‖w0‖ = 1, by the solution in (17).
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5. SIMULATION EXAMPLES

We consider Rayleigh flat-fading channels with path losses
dB = dE = 1, noise power σ2

v , training power budget PB

at Bob is such that PB/σ
2
v = 10dB, training power budget

PE at Eve is such that PE/σ
2
v varies from −20dB through

20dB, and fractional allocation β of training power at Bob
to random sequence sB(n) is 0.4 . Bob and Eve have single
antennas while Alice has N r = 4 or 40 antennas. The train-
ing sequence is selected as periodic extension of a (binary)
Hadamard sequence of length P = 24 = 16 and the ran-
dom sequences {sBi

(n)} were i.i.d. QPSK. Fig. 1 shows our
detection probability Pd results averaged over 5000 runs un-
der pilot contamination attack for various parameter choices
when PB/σ

2
v = 10dB. The performance improves with in-

creasing T , Nr and Eve’s power PE .

The secrecy rate results of matched filter beamforming as
discussed in Sec. 4 are shown in Fig. 2, with the correspond-
ing normalized channel estimation MSE (mean-square error)

‖ĥB − hB‖2/‖hB‖2 and ‖ĥE − hE‖2/‖hE‖2 shown in Figs.
3 and 4, respectively, all averaged over 5000 runs. If Eve’s
presence is not detected, we use (14). If Eve is detected, after
joint channel estimation, we use the generalized eigenvector
of (16) with largest eigenvalue. In our simulations, we did
not see any discernible difference between this solution and
(17). It is seen from Fig. 2 that secure beamforming yields a
secrecy rate performance as a function of PE that is almost
invariant to the presence/absence of pilot spoofing attack.
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Fig. 4: Channel normalized MSE for Eve’s channel as a func-
tion of Eve’s power PE . All parameters as for Fig. 1.

6. CONCLUSIONS

A novel approach to detection of pilot contamination attack
in a 3-node TDD system was recently presented in [4] where
attack mitigation was not addressed. In this paper In this pa-
per we augmented the approach of [4] with joint (Bob and
Eve) channel estimation and secure beamforming to mitigate
the effects of pilot spoofing. The proposed approach was il-
lustrated by numerical examples which show a secrecy rate
performance that is almost invariant to the presence/absence
of pilot spoofing attack.

2100



7. REFERENCES

[1] X. Zhou, B. Maham and A. Hjorungnes, “Pilot contam-
ination for active eavesdropping,” IEEE Trans. Wire-
less Commun., vol. 11, pp. 903-907, March 2012.

[2] D. Kapetanovic, G. Zheng, K-K. Wong and B. Otter-
sten, “Detection of pilot contamination attack using
random training and massive MIMO,” in Proc. 2013
IEEE 24th Intern. Symp. Personal, Indoor, Mobile Ra-
dio Commun. (PIMRC), pp. 13-18, London, UK, Sept.
8-11, 2013.

[3] Q. Xiong, Y-C. Liang, K.H. Li and Y. Gong, “An
energy-ratio-based approach for detecting pilot spoof-
ing attack in multiple-antenna systems,” IEEE Trans.
Information Forensics & Security, vol. 10, pp. 932-
940, May 2015.

[4] J.K. Tugnait, “Self-contamination for detection of pi-
lot contamination attack in multiple antenna systems ,”
IEEE Wireless Communications Letters, vol. 4, No. 5,
pp. 525-528, Oct. 2015.

[5] Q. Xiong, Y-C. Liang, K.H. Li and Y. Gong, “Se-
cure transmission against pilot spoofing attack: A two-
way training-based scheme,” IEEE Trans. Information
Forensics & Security, vol. 11, pp. 1017-1026, May
2016.

[6] J.K. Tugnait, “Detection of pilot contamination attack
in TDD/SDMA systems,” in Proc. 2016 IEEE Intern.
Conf. Acoustics, Speech & Signal Processing (ICASSP
2016), pp. 3576-3580, Shanghai, China, March 20-25,
2016.

[7] R. Miller and W. Trappe, “On the vulnerabilities of
CSI inMIMOwireless communication systems,” IEEE
Trans. Mobile Computing, vol. 8, pp. 1386-1398, Aug.
2012.

[8] M. Wax and T. Kailath, “Detection of signals by in-
formation theoretic criteria,” IEEE Trans. Acoustics,
Speech, Signal Proc., vol. 33, no. 2, pp. 387-392, April
1985.

[9] F. Haddadi, M. Malek-Mohammadi, M.M. Nayebi and
M.R. Aref, “Statistical performance analysis of MDL
source enumeration in array processing,” IEEE Trans.
Signal Processing, vol. 58, no. 1, pp. 452-457, Jan.
2010.

[10] B. Nadler, “Nonparametric detection of signals by in-
formation theoretic criteria: Performance analysis and
an improved estimator,” IEEE Trans. Signal Process-
ing, vol. 58, no. 5, pp. 2746-2756, May 2010.

[11] L. Lu, G.Y. Li, A.L. Swindlehurst, A. Ashikhmin and
R. Zhang, “An overview of massive MIMO: Benefits
and challenges,” IEEE J. Sel. Topics Signal Proc., vol.
8, no. 5, pp. 742-758, Oct. 2014.

[12] T. Lo, “Maximal ratio transmission,” IEEE Trans.
Commun., vol. 47, no. 10, pp. 1458-1461, Oct. 1999.

[13] A. Khisti and G. Wornell, “Secure transmission with
multiple antennas - I: The MISOME wiretap channel,”
IEEE Trans. Information Theory, vol. 56, pp. 3088-
3104, July 2010.

2101


