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ABSTRACT

In this paper, a two-dimensional anti-jamming communica-

tion scheme for cognitive radio networks is developed, in

which a secondary user (SU) exploits both spread spectrum

and user mobility to address jamming attacks, while not in-

terfering with primary users. By applying a deep Q-network

algorithm, this scheme determines whether to recommend

that the SU leave an area of heavy jamming and chooses a

frequency hopping pattern to defeat smart jammers. Without

knowing the jamming model and the radio channel mod-

el, the SU derives an optimal anti-jamming communication

policy using Q-learning in a proposed dynamic game, and

applies a deep convolution neural network to accelerate the

learning speed with a large number of frequency channels.

The proposed scheme can increase the signal-to-interference-

plus-noise ratio and improve the utility of the SU against co-

operative jamming, compared with a Q-learning-only based

benchmark system.

Index Terms— Cognitive radio networks, jamming, deep

reinforcement learning, game theory, deep Q-networks

1. INTRODUCTION

In cognitive radio networks (CRNs), secondary users (SUs)

have to avoid interfering with the communications of primary

users (PUs) and should counteract jammers that inject jam-

ming signals to interrupt the ongoing transmissions of SUs for

the purpose of denial of service (DoS). Spread spectrum tech-

niques, such as frequency hopping (FH) and direct-sequence

spread spectrum have been used for decades as anti-jamming

techniques in wireless communications. However, by apply-

ing smart radio devices such as universal software radio pe-

ripherals, jammers can cooperate to block most frequency

channels of the CRN and thus interrupt the transmissions of

FH-based SUs in the area. In addition, spectrum sensing and

eavesdropping on the control channel that broadcasts the FH
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pattern further increases the jamming strength against FH-

based CRN [1].

User mobility can improve the signal-to-interference-

plus-noise ratio (SINR) of the SU signals, if the user simply

leaves the area of heavy jamming in which most frequency

channels are blocked by smart jammers. Therefor, we con-

sider a two-dimensional (2-D) anti-jamming communication

system that applies both frequency hopping and user mobil-

ity to address smart jammers. However, the communication

system has to make a tradeoff between the signal SINR and

the security cost as it requires a much higher cost for an SU

to change its geographical location compared with frequency

hopping.

Game theory has been widely applied to address jamming

in wireless communications [2–7]. For instance, an anti-

jamming power control Stackelberg game presented in [3]

formulates the interactions among a jammer, a relay node and

a source node that choose their power allocation strategies in

sequence without interfering with PUs. The prospect-theory

based dynamic jamming game in [5] investigates the impact

of the subjective decision making process of a jammer. Com-

munication against reactive jamming is formulated in [6] as a

Stackelberg game. Further, the Bayesian anti-jamming com-

munication game in [7] studies jammers with unknown types

of intelligence.

Reinforcement learning techniques such as Q-learning

can learn an optimal policy via trials in Markov decision

processes. For example, a Q-learning based power control

strategy developed in [3] effects a tradeoff between the cost of

defense and communication efficiency without being aware of

the jamming model. The Q-learning based channel allocation

procedure proposed in [8] provides an optimal channel ac-

cessing strategy in the multi-channel dynamic anti-jamming

game. The on-policy synchronous Q-learning based channel

allocation in [9] proactively avoids the jammed channels in

the CRN. However, the Q-learning algorithm suffers from

slow learning speeds if the state space and the action set are

large, thus yielding anti-jamming performance degradation.

In this paper, we investigate a frequency-spatial anti-

jamming communication game and propose a 2-D anti-

jamming system based on a deep Q-network (DQN) al-

gorithm, a deep reinforcement learning technique recently
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Fig. 1. Network model.

developed by Google DeepMind [10]. By exploiting a deep

convolutional neural network (CNN), the DQN-based anti-

jamming system can address the curse of high-dimensionality

of Q-learning and accelerate the learning speed. In particular,

in our approach the SU uses a DQN to choose a frequency

channel and determine whether to leave the area of heavy

jamming without being aware of the jamming model and the

radio channel model in a dynamic game formulation based

on the history against jamming attacks.

The rest of this paper is organized as follows: We present

the anti-jamming communication game in Section 2 and pro-

pose a 2-D DQN-based anti-jamming communication system

in Section 3. We provide simulation results in Section 4 and

conclude in Section 5.

2. ANTI-JAMMING COMMUNICATION GAME

We consider the transmission of an SU against J coopera-

tive jammers that are randomly located in the CRN with fre-

quency hopping over N frequency channels, as shown in Fig.

1. At time slot k, the SU chooses an action, denoted by xk

∈ {0, · · · , N} to determine whether to leave the geographi-

cal area, and which channel to use to send signals with a given

power Ps. For example, the user in Fig. 1 stays in the area and

sends the signals to access point (AP)1 if xk > 0; otherwise,

the user moves to another area and connects to AP2 if xk = 0.

Let hs denote the radio channel power gain from the SU to the

serving AP or Base Station (BS), and Cm be the extra cost of

user mobility compared with frequency hopping. For simplic-

ity, we assume that each AP or BS can receive signals from

all N channels, although our scheme can be extended to other

cases as well.

Jammer j chooses channel ykj ∈ {1, · · · , N} to send jam-

ming signals with a given power Pj . The channel power gain

from the jammer to the current serving AP or BS is denoted

by hj , j = 1, · · · J . Both the SU and the J jammers have to

avoid interfering with PUs, whose presence is denoted by λ,

which equals 1 if a PU is accessing Channel xk in the current

area and equals zero otherwise.

For simplicity, we assume that these J jammers cannot

interfere with the new AP if the SU moves to a new area and

the channel power gain to the new AP is still hs in the sim-

ulations. Based on the SINR and the transmission cost, the

utility of the SU (or jammer) at time slot k in the zero-sum

game, denoted by uk
s (or uk

j ), is defined as

uk
s = −uk

j =
Pshsλ

σ +ΣJ
j=1Pjhjf(xk = ykj )

− Cmf(xk = 0),

(1)

where σ is the receiver noise power, and f(ξ) is an indicator

function that equals 1 if ξ is true, and 0 otherwise. The first

term on the right-hand-side of (1) is the SINR of the signal.

3. DQN-BASED ANTI-JAMMING
COMMUNICATION

In the dynamic anti-jamming game, an SU can apply Q-

learning to derive an optimal policy to determine whether

to leave the area and choose a channel, without being aware

of the jamming model and the radio channel model. The

action of the SU is selected based on the system state at time

k denoted by sk, which represents the state of the radio en-

vironment including the PUs, the jammers and the serving

BS/AP. More specifically, the system state sk consists of the

presence of PUs and the SINR of the signal at time k−1, i.e.,

sk = [λk−1, SINRk−1].

Table 1. CNN parameters

Layer Conv 1 Conv 2 FC 1 FC 2

Input 6× 6 4× 4× 20 360 180

Filter size 3× 3 2× 2 / /

Stride 1 1 / /

No. of filters 20 40 180 N + 1

Activation ReLU ReLU ReLU ReLU

Output 4× 4× 20 3× 3× 40 180 N + 1

As illustrated in Fig. 2, the DQN-based communication

system uses a deep convolutional neural network to acceler-

ate the learning speed of Q-learning as a large number (N )

of frequency channels are involved. The DQN algorithm up-

dates a quality-function or Q-function for each state-action

pair, which is the expected discounted long-term reward for

state s and action x, i.e.,

Q(s, x) = Es′
[
us + γmax

x′
Q(s′, x′)|s, x

]
, (2)
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Fig. 2. DQN-based anti-jamming communication system.

where s′ is the next state if the SU takes action x at state s,

and γ is the discount factor that represents the uncertainty of

the SU about the future reward.

The CNN is used as a nonlinear function approximator to

estimate the value of the Q-function for each action, because

the number of feasible values of sk is too large to quickly

derive the optimal policy. The CNN consists of two convolu-

tional (Conv) layers and two fully connected (FC) layers. The

first Conv layer includes 20 filters each with size 3 × 3 and

stride 1, and the second Conv layer has 40 filters each with

size 2×2 and stride 1, as shown in Table 1. Both Conv layers

use the rectified linear unit (ReLU) as the activation function.

The first FC layer involves 180 rectified linear units, while the

second FC layer has N + 1 units for the action set. The filter

weights of the four layers in the CNN at time k are denoted

by θk.

Let ϕk denote the state sequence at time k, which consists

of the current system state and the previous W system state-

action pairs, i.e., ϕk = (sk−W , xk−W , · · · , xk−1, sk). The

state sequence is then reshaped into a 6 × 6 matrix as the

input to the CNN to estimate Q(ϕk, x|θk), ∀0 ≤ x ≤ N .

The CNN parameters θk are updated at each time slot based

on experience replay.

The experience observed by the SU is denoted by ek =
(ϕk, xk, uk

s ,ϕ
k+1), and the memory pool at time k is given

by D = {e1, · · · , ek}. The experience replay chooses an ex-

perience ed from memory pool D at random, with 1 ≤ d ≤ k
to update θk according to a stochastic gradient descent (SGD)

algorithm. The mean-squared error of the target optimal Q-

function value is minimized with minibatch updates, and the

loss function is chosen by [10] as

L(θk) = Eϕk,x,us,ϕk+1

[(
R−Q

(
ϕk, x; θk

))2
]
, (3)

where R is the target optimal Q-function, which is given by

R = us + γmax
x′

Q
(
ϕk+1, x′; θk−1

)
. (4)

The gradient of the loss function with respect to the

Algorithm 1. 2-D anti-jamming communication system

based on DQN

Initialize θ, γ, Ps, λ0, SINR0, s0 = [λ0, SINR0], W , B,

D = ∅
For k = 1, 2, · · ·

If k ≤ W
Choose Channel xk ∈ {0, 1 · · ·N} at random

Else

Obtain the output Q(ϕk, x|θk) from the CNN with

input ϕk and weights θk

Choose xk via the ε-greedy algorithm

End if

If xk = 0
Recommend that the SU leave the area

Else

Use Channel xk to send signals with power Ps

End if

Observe SINRk and λk

Obtain uk
s and sk+1 = [λk, SINRk]

ϕk+1 =
(
sk−W+1, xk−W+1, · · · , xk, sk+1

)
Store the new experience

{
ϕk, xk, uk

s ,ϕ
k+1

}
in D

For d = 1, 2, · · · , B
Select

(
ϕd, xd, ud

s ,ϕ
d+1

)
from D at random

Calculate R via (4)

End for

Update θk via (5)

End for
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weights θk is given by

∇θkL(θk) =Eϕk,x,us,ϕk+1

[
R∇θkQ

(
ϕk, x; θk

) ]

− Eϕk,x

[
Q
(
ϕk, x; θk

)∇θkQ
(
ϕk, x; θk

) ]
.

(5)

This process repeats B times at each time slot and θk is up-

dated according to the B randomly selected experiences.

The action xk is chosen according to the Q-function and

sk. According to the ε-greedy algorithm, the optimal action

x∗ = argmaxx′ Q(ϕk, x′) is chosen with a high probability

1 − ε, and another action is selected with a low probability

ε/N to avoid staying in the local maximum. If xk is 0, it

is suggested that the SU leave the area. Otherwise, the SU

transmits on Channel xk. Next, the SU receives the SINR

information as feedback from the serving AP or BS, and re-

ceives the utility uk
s . According to the next state sequence

ϕk+1, the SU stores the new experience
{
ϕk, xk, uk

s ,ϕ
k+1

}
in the memory pool D. The DQN-based anti-jamming system

is summarized in Algorithm 1.

Algorithm 2. Q-learning based system

Initialize γ, α, Ps, λ0, SINR0, s0 = [λ0, SINR0],

Q(s, x) = 0, V (s) = 0, ∀s, x
For k = 1, 2, · · ·

Choose xk via ε-greedy

If xk = 0

Recommend that the SU leave the area

Else

Use Channel xk to send signals with power Ps

End if

Obtain SINRk, uk
s and λk

sk+1 = [λk, SINRk]

Update Q(sk, xk) via (6)

Update V (sk) via (7)

End for

As a benchmark, we propose a Q-learning based 2-D anti-

jamming communication system as shown in Algorithm 2,

in which the Q-function is estimated according to iterative

Bellman equation as follows:

Q
(
sk, xk

) ←α
(
uk
s

(
sk, xk

)
+ γV

(
sk+1

) )
+ (1− α)Q

(
sk, xk

)
(6)

V
(
sk
) ← max

x
Q
(
sk, x

)
, (7)

where V (sk) is the value function of sk, and α is the learning

rate. The convergence rate of the Q-learning algorithm de-

pends on the size of the state space, which increases with N ,

and thus the system has to address the curse of dimensionality

of Q-learning.
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Fig. 3. Performance of the DQN-based anti-jamming com-

munication scheme.

4. SIMULATION RESULTS

Simulations have been performed to evaluate the performance

of our proposed anti-jamming communication scheme. The

primary user randomly chooses a channel out of the N = 128
channels during the dynamic game, with σ = 1, ε = 0.1,

Cm = 0.2, hs ∈ (0, 1), hj ∈ (0, 1), and Ps = Pj = 5,

against J = 2 jammers. One jammer sweeps the N channels

and the other applies the ε-greedy algorithm to choose the

jamming channel based on the last transmission channel of

the SU.

As shown in Fig. 3, the DQN-based anti-jamming com-

munication system outperforms the Q-learning based system,

which in turn exceeds the FH system that randomly chooses a

channel, with a higher SINR, lower cost of defense and higher

utility. More specifically, the DQN-based system has a faster

convergence rate than the Q-learning algorithm, and achieves

a higher SINR. For instance, the SINR of the SU’s signal in-

creases from 2.78 at the beginning of the game to 3.4 at time

slot 1000, while the SINR of the Q-learning based strategy

is only 3.16 at that time. Therefore, the utility of the SU in-

creases from 2.73 at the beginning to 3.39 at time slot 1000,

which is 8.3% higher than that of the Q-learning strategy, and

it does so with a faster convergence rate.

5. CONCLUSIONS

In this paper, we have formulated a dynamic anti-jamming

communication game for CRNs, which exploits both spread

spectrum and user mobility to improve the SINR of the sig-

nals against cooperative smart jammers. A DQN-based com-

munication system is proposed for an SU to achieve the opti-

mal frequency hopping policy and decide whether to leave the

area of heavy jamming, without being aware of the jamming

model and the radio channel model. By applying the deep

CNN technique, our proposed anti-jamming system outper-

forms the Q-learning strategy with a faster convergence rate,

higher SINR, lower cost of defense and higher utility of the

SU.
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