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Abstract—In many applications of wireless sensor networks
(WSNs), sensors are deployed in hostile environments where an
adversary can eavesdrop communications. To secure communica-
tions in WSNs, the q-composite key predistribution scheme has
been widely recognized as a suitable approach. In this paper, we
investigate connectivity in secure WSNs operating under the q-
composite scheme, in consideration of different link constraints:
the unreliability of wireless links and the requirement that two
sensors have to be within certain distance to have a link. We
formally derive conditions on how to scale the model parameters
so that the network is securely connected with high probability
when the number of sensors becomes large. The results are given
in the form of zero–one laws and provide useful guidelines for
designing securely and reliably connected sensor networks.

Index Terms—Security, key predistribution, wireless networks,
link constraints, random graphs.

I. INTRODUCTION

In wireless sensor networks, random key predistribution

schemes have been extensively used to secure communications

[1]–[5], [14]. Introduced in the seminal work of Eschenauer

and Gligor [3], the idea of random key predistribution has the

following two steps: (i) before deployment, sensors are loaded

with cryptographic keys selected in some random manner, and

(ii) after deployment, for sensors that are close enough for

communication and also happen to share some keys, they use

the shared keys to generate link keys for secure communication.

Based on the seminal work [3], Chan et al. [2] propose the

q-composite key predistribution scheme which has widely been

recognized as an appropriate solution to secure communications

in sensor networks. The q-composite scheme works as follows.

For a sensor network with n nodes, in the key predistribution

phase, a large key pool consisting of Pn cryptographic keys is

used to select uniformly at random Kn distinct keys for each

sensor node. These Kn keys constitute the key ring of a sensor,

and are installed in the sensor’s memory. After deployment, two

sensors establish secure communication over an existing link if

and only if their key rings have at least q keys in common.

Both Pn and Kn are functions of n for generality, with the

natural condition 1 ≤ q ≤ Kn ≤ Pn.

The q-composite scheme is an extension of the Eschenauer–

Gligor scheme [3]; in the Eschenauer–Gligor scheme, a secure

link between two sensors require the sharing of just one key,

instead of q keys. In other words, the q-composite scheme with

q = 1 reduces to the Eschenauer–Gligor scheme. Chan et al. [2]
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show that the q-composite scheme with q ≥ 2 outperforms the

Eschenauer–Gligor scheme in terms of resilience to small-scale

sensor capture attacks while trading off increased vulnerability

in the presence of large-scale attacks. In both schemes, after

sensors are deployed, common keys are found in the neighbor

discovery phase whereby a random constant is enciphered in all

keys of a node and broadcast along with the resulting ciphertext

block in a given area limited by the transmission power/range;

i.e., in a local neighborhood.

Over the last decade, the q-composite scheme has received

much interest in the literature [1], [5], [6], [8], [14]. How-

ever, there is a lack of rigorous analysis on connectivity in

secure sensor networks operating under the q-composite scheme

with practical link constraints. This paper closes the above

gap. Specifically, we investigate connectivity in secure WSNs

operating under the q-composite scheme, in consideration of

different link constraints: the unreliability of wireless links

(represented by an on/off channel model), and the requirement

that two sensors have to be within certain distance to have a

link (represented by a disk model). The on/off channel model

comprises independent channels which are either on or off, and

captures the unreliability of wireless links due to the presence

of physical barriers between sensors or because of harsh

environmental conditions severely impairing communications

[9], [11]. In the disk model [13], [15]–[17], [19], [20], each

node’s transmission area is a disk with a transmission radius

rn, with rn being a function of n for generality, where n is

the number of nodes. Two nodes have to be within rn (their

distance is at most rn) for direct communication. As for the

node distribution, the same as much previous work [13], [15]–

[17], [20], [22], we consider that the n nodes are independently

and uniformly deployed in a torus of unit area.

Our results are given in the form of sharp zero–one laws,

meaning that the network is connected with high probability un-

der certain parameter conditions and does not have connectivity

with high probability if parameters are slightly changed, where

an event happens “with high probability” if its probability con-

verges to 1 asymptotically (i.e., as the number of sensors tends

to infinity). The zero–one laws specify the critical scaling of the

model parameters in terms of connectivity; in other words, the

zero–one laws determine the exact threshold of connectivity and

provide a precise guideline for ensuring connectivity. Obtaining

such a precise guideline is particularly crucial in a secure

WSN setting as explained below. To increase the chance of

connectivity, it is often required to increase the number of

keys kept in each sensor’s memory. However, since sensors are

expected to have limited memory, it is desirable for practical

key distribution schemes to have low memory requirements [2],

[3], [24], [26]. Thus, it is important to establish zero–one laws

in order to carefully dimension the q-composite scheme for
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network connectivity.

We organize the rest of the paper as follows. Section II de-

scribes the system model. Afterwards, we present the analytical

results in Section III and the proofs in Section IV. Section V

surveys related work. Finally, we conclude the paper in Section

VI.

II. SYSTEM MODEL

Our approach to the analysis is to explore the induced

random graph model of our studied WSN. As will be clear,

the graph model is an intersection of three distinct types of

random graphs. The intertwining of random graphs makes our

analysis challenging.

A uniform random q-intersection graph induced by the q-

composite scheme. We use Gq(n,Kn, Pn) to denote the graph

topology induced by the q-composite scheme. This graph is

known as a uniform random q-intersection graph [1], [4] in

the literature, and is constructed on a node set with size n
as follows. Each node is independently assigned a set of Kn

different keys, selected uniformly at random from a pool of Pn
keys. An edge exists between two nodes if and only if they

have at least q keys in common.

An Erdős–Rényi graph induced by unreliable links. With

each link being active with probability pn and inactive with

probability (1 − pn), the link unreliability yields an Erdős–

Rényi graph GER(n, pn) [27].

A random geometric graph induced by the disk model

with the uniform node distribution. The disk model with the

uniform node distribution induces a so-called random geometric

graph GRGG(n, rn) [20], which is defined as follows. Let n
nodes be uniformly and independently deployed in a torus of

unit area. An edge exists between two nodes if and only if their

distance is no greater than rn.

Graph intersection. We denote by Gq(n,Kn, Pn, pn, rn)
the underlying graph of the n-node WSN operating under the q-

composite scheme, the on/off channel model and transmission

constraints. Clearly, the edge set of Gq(n,Kn, Pn, pn, rn) is

the intersection of the edge sets of Gq(n,Kn, Pn), GER(n, pn),
and GRGG(n, rn), and these graphs are all defined on the vertex

set. Then Gq(n,Kn, Pn, pn, rn) can be seen as the intersection

of Gq(n,Kn, Pn), GER(n, pn), and GRGG(n, rn); i.e.,

Gq(n,Kn, Pn, pn, rn)

= Gq(n,Kn, Pn)∩GER(n, pn)∩GRGG(n, rn). (1)

III. THE RESULTS

Before presenting the results, we introduce some notation as

follows. The natural logarithm function is given by ln. All limits

are understood with n → ∞. We use the standard asymptotic

notation o(·), ω(·), O(·),Ω(·),Θ(·),∼ (see [29, Footnote 1]). In

particular, “∼” represents asymptotic equivalence and is defined

as follows: for two positive sequences fn and gn, the relation

fn ∼ gn means limn→∞(fn/gn) = 1. We let P[E ] denote the

probability that an event E happens.

Theorem 1 below presents a sharp zero–one law for con-

nectivity in a graph Gq(n,Kn, Pn, pn, rn). Connectivity means

that any two nodes of the graph can find a path in be-

tween [9], [30]. In the secure sensor network modeled by

Gq(n,Kn, Pn, pn, rn), connectivity enables any two sensors to

have secure communication either directly or through the help

of relaying nodes.

Theorem 1 For a graph Gq(n,Kn, Pn, pn, rn), if there exists

a positive constant c such that

1

q!

(

Kn
2

Pn

)q

· pn · πrn2 ∼ c · lnn
n
, (2)

then it holds under Pn = Ω(n) and Kn
2

Pn
= o(1) that

lim
n→∞

P

[

Gq(n,Kn, Pn, pn, rn)
is connected.

]

=

{

0, if c < 1, (3a)

1, if c > 1. (3b)

We explain that the left hand side of (2) is an asymptotic

expression for the edge probability of Gq(n,Kn, Pn, pn, rn).
To see this, for two sensors selecting Kn keys independently

from the same pool of Pn keys, the probability that they share at

least q keys equals
∑Kn

u=q

(Knu )(Pn−Kn
Kn−u )

(PnKn)
, which asymptotically

becomes 1
q!

(

Kn
2

Pn

)q
[4], [14]. In addition, pn is the probability

of a link being active, πrn
2 is the probability that two sensors

are within the transmission range rn on a torus of unit area.

We discuss the practicality of the conditions Pn = Ω(n) and
Kn

2

Pn
= o(1) in Theorem 1. Both conditions are enforced here

merely for technical reasons, but they hold trivially in realistic

wireless sensor network applications because it is expected [2],

[3], [26] that for security purposes, the key pool size Pn will

be much larger than both the number n of participating sensors

and the number Kn of keys on each sensor; for example,

in a practical sensor network, Pn is tens of thousands, n is

thousands or hundreds, and Kn is few dozens or small hundreds

[31], [38], [47].

IV. PROOF OF THEOREM 1

To establish Theorem 1, we need to prove the zero-law (3a)

and the one-law (3b), respectively.

Clearly, if a graph G is connected, then G contains no iso-

lated node [20]. To prove the zero-law (3a), we obtain the

corresponding zero-law for the absence of isolated node. This is

further done by the method of moments [33, Page 55] applied

to the total number of isolated nodes. We provide more details

in the full version [48].

To prove the one-law (3b), since connectivity is a monotone

increasing graph property, we associate Gq(n,Kn, Pn, pn, rn)
with a subgraph via graph coupling and show that the sub-

graph is connected with high probability. Given (1), we first

present Lemma 1 below to have a graph coupling between

Gq(n,Kn, Pn) and an Erdős–Rényi graph. Following Rybar-

czyk’s notation [34], we write

G1 � G2 (resp., G1 �1−o(1) G2) (4)

if there exists a graph coupling under which G1 is a spanning

subgraph of G2 with probability 1 (resp., 1− o(1)).

Lemma 1 If Kn = ω
(

max{lnn,
√
Pn
n

}
)

and Kn =
o
(

min{
√
Pn,

Pn
n
}
)

, then

GER(n,
1
q! ·

Kn
2q

Pn
q · [1− o(1)]) �1−o(1) Gq(n,Kn, Pn). (5)

From Lemma 1, we further know that Gq(n,Kn, Pn, pn, rn)

has a subgraphGER(n, pn· 1q! ·Kn
2q

Pn
q ·[1−o(1)]) ∩GRGG(n, rn),

whose connectivity results have been recently derived by Pen-

rose [49]. Based on the above, the proof of Theorem 1 is
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straightforward.

We now detail the proof of Lemma 1. We introduce an

auxiliary graph called a binomial random q-intersection graph

Hq(n, sn, Pn) [1], [6], [37] defined later. We couple graph

Gq(n,Kn, Pn) with a binomial random q-intersection graph

in Lemma 2 below, while we couple a binomial random q-

intersection graph with an Erdős–Rényi graph in Lemma 3

below. Lemma 1 is proved using Lemmas 2 and 3.

A binomial random q-intersection graph Hq(n, sn, Pn) is

constructed on n nodes by the following process. There exists

a key pool of size Pn. Each key in the pool is added to each

node independently with probability sn. Clearly, the difference

between a binomial random q-intersection graph Hq(n, sn, Pn)
and a uniform random q-intersection graph Gq(n,Kn, Pn) is

that in Hq(n, sn, Pn), the number of keys assigned to each node

obeys a binomial distribution with Pn as the number of trials,

and with sn as the success probability in each trial, while in

Gq(n,Kn, Pn), such number equals Kn with probability 1.

Lemma 2 If Kn = ω(lnn) and Kn = o
(√
Pn
)

, with sn set

by

sn = Kn
Pn

(

1−
√

3 lnn
Kn

)

, (6)

then it holds that

Hq(n, sn, Pn) �1−o(1) Gq(n,Kn, Pn). (7)

Lemma 3 If snPn = ω(lnn), nsn = o(1), Pnsn
2 = o(1) and

n2sn
2Pn = ω(1), then there exits some pn satisfying

pn = (Pnsn
2)q

q! · [1− o(1)] (8)

such that Erdős–Rényi graph GER(n, pn) obeys

GER(n, pn) �1−o(1) Hq(n, sn, Pn). (9)

Lemma 2 is based on [1, Lemma 4] and further explained

in the full version [48]. We present the proof of Lemma 3

below.

Proof of Lemma 3:

In binomial random q-intersection graph Hq(n, Pn, sn), let

Vi be the set of sensors assigned with key κi from the key

pool (i = 1, 2, . . . , Pn). Vi denoting the cardinality of Vi (i.e.,

Vi := |Vi|) obeys a binomial distribution Bin(n, sn), with n
as the number of trials, and sn as the success probability in

each trial. Clearly, we can generate the random set Vi in the

following equivalent manner: First draw the cardinality Vi from

the distribution Bin(n, sn), and then choose Vi distinct nodes

uniformly at random from the set V of all nodes.

Given Vi introduced above, we define below random graph

H(Vi) on node set V : H(Vi) is constructed by establishing

edges between any and only pair of nodes in Vi; i.e., H(Vi)
has a clique on Vi and no edges between nodes outside of

this clique. If a realization of the random variable Vi satisfies

Vi < 2, then the corresponding H(Vi) will be an empty graph.

We now explain the connection between H(Vi) and the

binomial random q-intersection graph Hq(n, Pn, sn). We let

an operator Oq take a multigraph [40] with possibly multiple

edges between two nodes as its argument. The operator returns

a simple graph with an undirected edge between two nodes i
and j, if and only if the input multigraph has at least q edges

between these nodes. Recall that two nodes in Hq(n, Pn, sn)

need to share at least q keys to have an edge in between.

Then, with H(V1), . . . , H(VPn) generated independently, it is

straightforward to see

Oq

(

Pn
⋃

i=1

H(Vi)

)

=st Hq(n, Pn, sn), (10)

with =st denoting statistical equivalence.

We now introduce auxiliary random graphs L(n,X) and

Lq(n,X), both defined on the n-size node set V , where X
is a non-negative random integer variable. Note that X can

also be a fixed value with probability 1. We sample X node

pairs with repetition from all pairs of V (a pair is unordered).

In graph L(n,X) (resp., Lq(n,X)), two nodes have an edge

in between if and only if the node pair is sampled at least once

(resp., q times).

With H(Vi) and L(n,X) given above, we show a coupling

below under which random graph L(n,
⌊

Vi/2
⌋

) is a subgraph

of random graph H(Vi); i.e.,

L(n,
⌊

Vi/2
⌋

) � H(Vi). (11)

By definition, graph L(n,
⌊

Vi/2
⌋

) has at most
⌊

Vi/2
⌋

edges

and thus contains non-isolated nodes with a number (denoted

by ℓ) at most 2 ·
⌊

Vi/2
⌋

≤ Vi. Given an instance L of random

graph L(n,
⌊

Vi/2
⌋

), we construct set Vi as the union of the ℓ
number non-isolated nodes in L and the rest (Vi − ℓ) nodes

selected uniformly at random from the rest (n − ℓ) isolated

nodes in L. Since graph H(Vi) contains a clique of Vi, it is

clear that the induced instance of H(Vi) is a supergraph of the

instance L of graph L(n,
⌊

Vi/2
⌋

). Then (11) is proved.

Now based on L(n,
⌊

Vi/2
⌋

), we construct a graph defined on

node set V . We add an edge between two nodes in this graph if

and only if there exist at least q different number of i such that

the two nodes have an edge in each of these L(n,
⌊

Vi/2
⌋

). By

the independence of Vi (i = 1, 2, . . . , Pn) and the definition

of Lq(n,X) above, it is clear that such induced graph is

statistically equivalent to Lq
(

n,
∑Pn

i=1

⌊

Vi/2
⌋)

. Namely, we

have

Oq

(

Pn
⋃

i=1

L(n,
⌊

Vi/2
⌋

)

)

=st Lq
(

n,

Pn
∑

i=1

⌊

Vi/2
⌋)

(12)

In view of (10), (11), and (12), we see

Lq(n, Y ) � Hq(n, Pn, sn), (13)

where Y is defined via

Y :=

Pn
∑

i=1

Wi, (14)

with

Wi :=
⌊

Vi/2
⌋

= 1
2 (Vi − I[Vi is odd]). (15)

We will provide a lower bound on Y with high probability.

By Chebyshev’s inequality, it follows that for any φ > 0,

P
[

|Y − E[Y ]| ≥ φ
√

Var[Y ]
]

≤ φ−2.

We compute E[Y ] and Var[Y ] and have the following results

(16) and (17) (see the full version [48]). We have

Var[Y ] ≤ 2E[Y ], (16)

and

E[Y ] = 1
2n(n− 1)Pnsn

2 · [1± o(1)] = ω(1). (17)

where the last step in (17) uses the condition n2sn
2Pn = ω(1).
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Now based on (16) and (17), we select

φ =

{

E[Y ]
}

5

6

2
√

Var[Y ]
, (18)

which with (16) and (17) results in φ = ω(1) and hence

P
[

Y < E[Y ]− φ
√

Var[Y ]
]

= o(1). (19)

Let Z be a Poisson random variable with mean

λ := E[Y ]−
{

E[Y ]
}

5

6 . (20)

With ψ defined by

ψ := 1
2

{

E[Y ]
}

1

3 , (21)

from (17) (20) and (21), we conclude that ψ = ω(1) and ψ =
o
(√
λ
)

. By [40, Lemma 1.2], it holds that

P
[

Z ≥ λ+ ψ
√
λ
]

≤ e
ψ
√
λ−(λ+ψ

√
λ) ln(1+ ψ

√

λ
)
. (22)

From ψ = o
(√
λ
)

, then for all n sufficiently large, we have

ln
(

1 + ψ√
λ

)

≥ ψ√
λ
− ψ2

2λ (derived from a Taylor expansion),

which is used in (22) to yield

P
[

Z ≥ λ+ ψ
√
λ
]

≤ e
ψ
√
λ−(λ+ψ

√
λ)
(

ψ
√

λ
−ψ2

2λ

)

= e
ψ2

2

(

ψ
√

λ
−1
)

. (23)

Applying ψ = ω(1) and ψ = o
(√
λ
)

to (23), we obtain

P
[

Z ≥ λ+ ψ
√
λ
]

= o(1). (24)

From (18) (20) and (21), we establish

λ+ ψ
√
λ ≤ E[Y ]−

{

E[Y ]
}

5

6 + 1
2

{

E[Y ]
}

1

3 ·
√

E[Y ]

= E[Y ]− φ
√

Var[Y ]. (25)

Given (19) (24) and (25), we use the union bound to obtain

P[Y ≥ Z]

≥ P

[

(

Y ≥ E[Y ]− φ
√

Var[Y ]
)∩ (λ+ ψ

√
λ ≥ Z )

]

≥ 1− P
[

Y < E[Y ]− φ
√

Var[Y ]
]

− P
[

λ+ ψ
√
λ < Z

]

→ 1, as n→ ∞. (26)

Given (26), by the definition of graph Lq(n,X), it is easy

to construct a coupling such that Lq(n, Z) is a subgraph of

Lq(n, Y ) with probability 1− o(1); namely,

Lq(n, Z) �1−o(1) Lq(n, Y ). (27)

From [41, Proof of Claim 1], for a Poisson random variable

Z with mean λ, in sampling Z node pairs with repetition from

all pairs of an n-size node set, the number of draws of different

pairs are independent Poisson random variables with mean

µ := λ

/(

n

2

)

. (28)

Thus, Lq(n, Z) with Z following a Poisson distribution with

mean λ is an Erdős–Rényi graph [27] in which each edge

independently appears with a probability that a Poisson random

variable with mean µ is at least q, i.e., a probability of

̺n :=

∞
∑

x=q

µxe−µ

x!
. (29)

In view that Lq(n, Z) is equivalent to GER(n, ̺n), then from

(13) and (27), it follows that

GER(n, ̺n) �1−o(1) Hq(n, Pn, sn), (30)

which is exactly (9) in the statement of Lemma 3. Therefore,

the proof of Lemma 3 is completed once we show that ̺n

defined in (29) satisfies (8) (i.e., ̺n = pb · [1± o(1)]).
From [43, Proposition 1], ̺n in (29) can be bounded by

µqe−µ

q!
< ̺n <

µqe−µ

q!
·
(

1− µ

q + 1

)−1

. (31)

From (17) (20) (28), and conditions n2sn
2Pn = ω(1) and

Pnsn
2 = o(1), it follows that

µ : = λ

/(

n

2

)

= Pnsn
2
[

1−O
(

(n2sn
2Pn)

− 1

6

)]

= Pnsn
2 · [1− o(1)] = o(1). (32)

Using (32) in (31), we obtain

̺n ∼ µqe−µ

q!
∼ (Pnsn

2)q

q!
. (33)

From [34, Fact 3], for Erdős–Rényi graphs GER(n, p
′
n) and

GER(n, p
′′
n), if p′n ≤ p′′n, then GER(n, p

′
n) � GER(n, p

′′
n).

Therefore, by (30) (33) and [44, Fact 3] on the transitivity of

graph coupling, we can set pn = (Pnsn
2)q

q! · [1− o(1)] to have

GER(n, pn) �1−o(1) Hq(n, Pn, sn). �

V. RELATED WORK

Recall that the q-composite key predistribution scheme with

q = 1 reduces to the Eschenauer–Gligor scheme [3]. (k)-

Connectivity and other related properties of sensor networks

with the Eschenauer–Gligor scheme under different communi-

cation models are analyzed in the literature [7], [12], [15], [18],

[21], [23], [39], [45], [46].

The uniform random q-intersection graph has been exten-

sively studied in prior work in terms of various properties, in-

cluding (k)-connectivity [4], [8], [10], [25], [28], (k)-robustness

[36], clustering [37], giant component [1], and perfect matching

[8], and resilience [32], [42].

Chan and Fekri [35] approximate a uniform random q-

intersection graph by an Erdős–Rényi graph and thus approxi-

mate the sensor network with the q-composite scheme under the

disk model as the intersection of an Erdős–Rényi graph and a

random geometric graph, in order to obtain connectivity results

of the network. However, there is a lack of rigorous argument

for this approximation. A formal argument is needed because an

Erdős–Rényi graph and a uniform random q-intersection graph

used to represent the q-composite scheme are quite different;

e.g., edges are all independent in the former but are not in the

latter [1], [14], [37]. By graph coupling, we rigorously bridge

these two graphs.

VI. CONCLUSION

In this paper, we present a sharp zero–one law for connec-

tivity in a secure wireless sensor network operating with the q-

composite key predistribution scheme under unreliable wireless

links and the well-known disk model that two sensors have

to be within certain distance to have a link. The network is

modeled by composing a uniform q-intersection graph with an

Erdős-Rényi graph and then with a random geometric graph,

where the uniform q-intersection graph characterizes the q-

composite key predistribution scheme, the Erdős-Rényi graph

captures the on/off channel model, and the random geometric

graph represents the disk model. The zero–one law provides

useful guidelines for designing securely and reliably connected

sensor networks.
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