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Abstract—The finite state Markov channel (FSMC) has been
shown to be a useful model for the time-varying fading channels.
In this paper, we study the security issue in the wireless communi-
cation systems by considering the FSMC with an eavesdropper,
which we call the finite state Markov wiretap channel (FSM-
WC). More specifically, the FSM-WC is a channel with one input
(the transmitter) and two outputs (the legitimate receiver and
the eavesdropper). The transition probability of the FSM-WC is
controlled by a channel state which takes values in a finite set,
and it undergoes a Markov process. We assume that the state is
perfectly known by the legitimate receiver and the eavesdropper,
and through a noiseless feedback channel, the legitimate receiver
sends the state back to the transmitter after some time delay.
Measuring the eavesdropper’s uncertainty about the transmitted
message by equivocation, we provide inner and outer bounds
on the capacity-equivocation region of this novel model, and
show that these bounds meet (the capacity-equivocation region
is determined) if the channel output for the eavesdropper is a
degraded version of that for the legitimate receiver. The capacity
results of this paper are further explained via degraded Gaussian
and Gaussian fading examples.

Index Terms—Capacity-equivocation region, delayed state
feedback, finite-state Markov channel, secrecy capacity, wiretap
channel.

I. INTRODUCTION

The finite state Markov channel (FSMC) is a discrete
channel whose transition probability is controlled by a state
which takes values in a finite set, and the state undergoes a
Markov process. Wang et al. [1] and Zhang et al. [2] found
that the FSMC was a useful model for the time-varying fading
channels, and the capacity of the FSMC was studied by [3]. In
practical mobile wireless communication systems, the channel
state is usually obtained by the transmitter via the receiver’s
feedback, and this feedback is often not instantaneous, i.e.,
the transmitter often receives delayed state from the receiver.
This communication scenario can be modeled as the finite
state Markov channel with delayed feedback, see Figure 1.
The model of Figure 1 was investigated by Viswanathan [4],
and the capacity of this channel model was totally determined.
Moreover, Viswanathan [4] pointed out that the delayed receiv-
er’s channel output feedback does not increase the capacity of
the model of Figure 1, i.e., there is no need for the receiver to
send his channel output back to the transmitter at each time
instant. Other related works on the FSMC are in [5]-[10].

Wyner’s work on wiretap channel [11] and Csiszár-Körner’s
work on the broadcast channel with confidential messages

Fig. 1: The FSMC with delayed feedback

[12] lay the foundation of the information-theoretic securi-
ty in communication systems. Using the approach of [11]
and [12], the security problems in multi-user communication
channels, such as broadcast channel, multiple-access channel,
relay channel, and interference channel, have been widely
studied, see [13]-[28]. Recently, Wyner’s wiretap channel with
states has received much attention, see [29]-[32]. These works
focus on the scenario that the states are identical independent
distributed (i.i.d.), and to the best of the authors’ knowledge,
only Bloch et al. [33] and Sankarasubramaniam et al. [34]
investigated the wiretap channel with memory states, where
a stochastic algorithm for computing the multi-letter form
secrecy capacity of this model was provided. A single-letter
characterization for the secrecy capacity of [33] and [34] is
still open.

In this paper, we investigate the information-theoretic se-
curity in wireless communication networks by combining
Wyner’s wiretap channel model with the model of Figure
1, see Figure 2. In Figure 2, the transition probability of
the channel at each time instant depends on a state which
undergoes a finite-state Markov process. At time i, the re-
ceiver (throughout this paper, the “receiver” is used as a
shorthand for “legitimate receiver”) receives the state Si,
and sends it back to the transmitter after a delay time d via
a noiseless feedback channel. The channel encoder, at time
i, generates the channel input according to the transmitted
message W and the delayed state feedback Si−d. Moreover,
at time i, we assume that a powerful eavesdropper also receives
the state Si, and he wishes to obtain the transmitted message
W . The delay time d is perfectly known by the receiver, the
eavesdropper and the transmitter. Inner and outer bounds on
the capacity-equivocation region of the model of Figure 2
are provided in this paper, and we show that these bounds
meet if the channel output for the eavesdropper is a degraded
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version of that for the legitimate receiver. These capacity
results are further explained via a degraded Gaussian example.
The rest of this paper is organized as follows. In Section II,

Fig. 2: The FSM-WC with delayed state feedback

we show the definitions and the main results of the model of
Figure 2. Degraded Gaussian and Gaussian fading examples
of the model of Figure 2 are provided in Section III. Final
conclusions and future works are presented in Section IV. In
the remainder of this paper, the log function is taken to the
base 2.

II. DEFINITIONS AND THE MAIN RESULT OF THE MODEL
OF FIGURE 2

The channel is a finite-state Markov channel (FSMC), where
the channel state S takes values in a finite alphabet S =
{s1, s2, ..., sk}. At the i-th time (1 ≤ i ≤ N ), the channel out-
puts Yi and Zi depend only on Xi and Si, and thus the chan-
nel transition probability PY N ,ZN |XN ,SN (yN , zN |xN , sN ) =∏N
i=1 PY,Z|X,S(yi, zi|xi, si). The state process {Si} is as-

sumed to be a stationary irreducible aperiodic ergodic Markov
chain, and it is independent of the transmitted messages.
Furthermore, it satisfies

Pr{Si = si|Xi = xi, Y i = yi, Si−d = si−d}
= Pr{Si = si|Si−d = si−d}, (2.1)

where 1 ≤ d ≤ i− 1. Denote the 1-step transition probability
matrix by K, and denote the steady state probability of {Si}
by π. Let the random variables Si and Si−d be the channel
states at time i and i − d, respectively. The joint distribution
of (Si, Si−d) is given by

πd(Si = sl, Si−d = sj) = π(sj)K
d(sj , sl), (2.2)

where sl is the l-th element of S, sj is the j-th element of S,
and Kd(sj , sl) is the (j, l)-th element of the d-step transition
probability matrix Kd of the Markov process..

Let W , uniformly distributed over the alphabet W =
{1, 2, ...,M}, be the message sent by the transmitter. The i-th
time channel input Xi is given by

Xi =

{
fi(W ), 1 ≤ i ≤ d
fi(W,S

i−d), d+ 1 ≤ i ≤ N. (2.3)

Here note that the i-th time channel encoder fi is a stochastic
encoder. The channel decoder is a mapping

ψ : YN × SN → {1, 2, ...,M}, (2.4)

with inputs Y N and SN and output Ŵ . The average proba-
bility of error Pe is denoted by

Pe =
1

M

M∑
i=1

∑
sN

PSN (sn)Pr{ψ(yN , sN ) 6= i|i was sent}.

(2.5)
Since the state is also known by the eavesdropper, the eaves-
dropper’s equivocation to the message W is defined as

∆ =
1

N
H(W |ZN , SN ). (2.6)

A rate pair (R,Re) (where R,Re > 0) is called achievable
if, for any ε > 0, there exists a channel encoder-decoder
(N,∆, Pe) such that

logM

N
≥ R− ε, ∆ ≥ Re − ε, Pe ≤ ε. (2.7)

The capacity-equivocation region of the model of Figure 2 is a
set composed of all achievable (R,Re) pairs, and it is denoted
by R.

Main results on R:
Theorem 1: An inner bound Rin on R is given by

Rin = {(R,Re) : 0 ≤ Re ≤ R,
R ≤ I(V ;Y |S, S̃),

Re ≤ I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃)},

where the joint probability PUV SS̃XY Z(u, v, s, s̃, x, y, z) sat-
isfies

PUV SS̃XY Z(u, v, s, s̃, x, y, z)

= PY Z|XS(y, z|x, s)PX|UV S̃(x|u, v, s̃)PV |US̃(v|u, s̃) ·
PU |S̃(u|s̃)Kd(s̃, s)PS̃(s̃),

Kd(s̃, s) = PS|S̃(s|s̃), and U may be assumed to be a
(deterministic) function of V .

Proof: The message W is split into a common message
represented by the auxiliary random variable U and a confi-
dential message represented by the auxiliary random variable
V . The delayed feedback state Si−d is represented by the
auxiliary random variable S̃. Theorem 1 is proved by using a
multiplexing random binning coding scheme, which combines
Wyner’s random binning technique [11] with the multiplexing
coding for the finite state Markov channel (FSMC) with
delayed state feedback [4]. The details of the proof of Theorem
1 are in [37, pp. 17-24].

Theorem 2: An outer bound Rout on R is given by

Rout = {(R,Re) : 0 ≤ Re ≤ R,
R ≤ I(V ;Y |S, S̃),

Re ≤ I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃)},

where the joint probability PUV SS̃XY Z(u, v, s, s̃, x, y, z) sat-
isfies

PUV SS̃XY Z(u, v, s, s̃, x, y, z)

= PY Z|XS(y, z|x, s)PXV USS̃(x, v, u, s, s̃).
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Proof: Theorem 2 is proved by introducing the delayed
feedback state Si−d into the converse proof of the broadcast
channel with confidential messages [12], and defining the
following auxiliary random variables

U , (Y J−1, ZNJ+1, S
N , J), V , (U,W ),

S , SJ , S̃ , SJ−d, Y , YJ , Z , ZJ , (2.8)

where J is a random variable uniformly distributed over
{1, 2, , ..., N}, and it is independent of Y N , ZN , W and SN .
Due to the limits of the paper length, we omit the proof here,
and the details are in [37, pp. 24-27].

Remark 1: There are some notes on Theorem 1 and Theo-
rem 2, see the followings.
• Here note that the inner bound Rin is almost the same

as the outer bound Rout, except the definitions of the
joint probability PUV SS̃XY Z(u, v, s, s̃, x, y, z) in Rin
and Rout. To be specific, in Rin, the definition of
PUV SS̃XY Z(u, v, s, s̃, x, y, z) implies the Markov chains
S → (S̃, U, V ) → X , S → (S̃, U) → V and S → S̃ →
U , but these chains are not guaranteed in Rout.

• If the eavesdropper’s received symbol ZN is a degraded
version of Y N , i.e., the Markov chain (XN , SN ) →
Y N → ZN holds, the outer bound Rout meets with the
inner bound Rin, and they reduce to the following region
R∗, where

R∗ = {(R,Re) : Re ≤ R,
R ≤ I(X;Y |S, S̃),

Re ≤ I(X;Y |S, S̃)− I(X;Z|S, S̃)}. (2.9)

Proof: See [37, pp. 27-30].

III. EXAMPLES

A. Secrecy Capacity for the Degraded Gaussian Case of the
model of Figure 2

For the degraded Gaussian case of Figure 2, at the i-th time
(1 ≤ i ≤ N ), the inputs and outputs of the channel satisfy

Yi = Xi +NSi
, Zi = Yi +Nw,i. (3.1)

Here note that NSi is Gaussian distributed with zero mean,
and the variance of NSi depends on the i-th time state Si =
si (denoted by σ2

si ). The random variable Nw,i (1 ≤ i ≤
N ) is also Gaussian distributed with zero mean and constant
variance σ2

w. The power constraint of the transmitter is given
by
∑
s̃ π(s̃)EPX|S̃(x|s̃)[X

2|s̃] ≤ P0. The secrecy capacity Cs
of the degraded case of Figure 2 can be directly obtained
from R∗ by letting Re = R and maximizing R. Using the
degradedness assumption and the entropy power inequality,
it is not difficult to calculate the secrecy capacity Cgs of the
degraded Gaussian case of Figure 2, and it is given by

Cgs = max
P(s̃):

∑
s̃ π(s̃)P(s̃)≤P0

∑
s̃

∑
s

π(s̃)Kd(s̃, s)

(
1

2
log(1 +

P(s̃)

σ2
s

)− 1

2
log(1 +

P(s̃)

σ2
s + σ2

w

)), (3.2)

where P(s̃) is the transmitter’s power for the state s̃, and σ2
s

is the variance of the noise NS given the state S = s. These
definitions are similar to those in [4, pp. 764-765], and the
details of the proof of (3.2) are in [37, pp. 9-10]. In order
to gain some intuition on the secrecy capacity of (3.2), we
consider a simple case that the state alphabet S is composed
of only two elements. At each time instant, the state of the
channel is G (good state) or B (bad state). For the state G
(B), the noise variance of the channel is σ2

G (σ2
B). Here note

that σ2
B > σ2

G. The state process is given by

P (G|G) = 1− b, P (B|G) = b, P (B|B) = 1− g, P (G|B) = g.

The steady state probabilities π(G) and π(B) are given by

π(G) =
g

g + b
, π(B) =

b

g + b
. (3.3)

Define u = 1 − g − b and c = g/b. The parameter u is
related to the channel memory (Mushkin and Bar-David [35]
has already shown that the channel memory is increasing while
u is increasing), and the parameter c controls the steady state
distributions (see 3.3). Fixing c (for example, c = 1), we
can choose different u, d and σ2

w to investigate the effects
of channel memory, feedback delay and the eavesdropper’s
channel noise variance on the secrecy capacity Cgs . As we can
see in Figure 3, when the channel is changing rapidly (which
implies that the channel memory u is small, for example,
u = 0.02), the secrecy capacity goes to the infinite asymptote
even if d = 1. However, when the channel is changing
slowly (which implies that the channel memory u is large, for
example, u = 0.9), a larger feedback delay is tolerable since
the secrecy capacity loss compared with feedback without
delay (d = 0) is smaller. Moreover, it is easy to see that the
worse eavesdropper’s channel, the larger secrecy capacity.

B. Secrecy Capacity for the Degraded Gaussian Fading Case
of the model of Figure 2

For the degraded Gaussian fading case of Figure 2, at the
i-th time (1 ≤ i ≤ N ), the channel inputs and outputs satisfy

Yi = g(si)Xi +NSi , Zi = liYi +Nw,i. (3.4)

Here g(si) is the fading process of the transmitter, and we
assume that it is a deterministic function of si. The noise
NSi is Gaussian distributed with zero mean, and the variance
depends on the i-th time state Si of the channel. For the eaves-
dropper, the fading coefficient li is a constant, i.e., li = l for
all i ∈ {1, 2, ..., N}. The random variable Nw,i (1 ≤ i ≤ N ) is
also Gaussian distributed with zero mean and constant variance
σ2
w (Nw,i ∼ N (0, σ2

w) for all i ∈ {1, 2, ..., N}). The secrecy
capacity Cg∗s of the degraded Gaussian fading case of Figure
2 is given by

C(g∗)
s = max

P(s̃):
∑

s̃ π(s̃)P(s̃)≤P0

1

2

∑
s̃

∑
s

π(s̃)Kd(s̃, s)

(
1

2
log(1 +

g2(s)P(s̃)

σ2
s

)− 1

2
log(1 +

g2(s)l2P(s̃)

l2σ2
s + σ2

w

)).

(3.5)
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Fig. 3: The secrecy capacity C(g)
s for P0 = 100, σ2

G = 1, σ2
B = 100, c = 1 and several values of u and σ2

w

Here note that replacing Xi by g(si)Xi, and Yi by liYi, the
achievability proof of (3.5) is along the lines of that of (3.2),
and the converse proof of (3.5) is in [37, p. 14].

In order to gain some intuition on the secrecy capacity of
(3.5), we consider a simple two-state case where the state
process is the same as that in Subsection III-A. Define g(G) =
1, g(B) = 0.5, l = 0.8, u = 1 − g − b and c = g/b. In
the following Figure 4 and Figure 5, we compare the secrecy
capacities of the fading and non-fading cases for P0 = 100,
σ2
G = 1, σ2

B = 100, c = 1, g(G) = 1, g(B) = 0.5, l = 0.8

and several values of u and σ2
w. It is easy to see that C(g∗)

s

dominates C(g)
s (which implies that the fading may enhance

the security of the degraded Gaussian model of Figure 2), and
the gap between C

(g∗)
s and C

(g)
s is increasing while σ2

w is
decreasing.

Fig. 4: The comparison of the secrecy capacities C(g∗)
s and

C
(g)
s for P0 = 100, σ2

G = 1, σ2
B = 100, σ2

w = 200, c = 1,
g(G) = 1, g(B) = 0.5, l = 0.8 and several values of u

IV. CONCLUSION

In this paper, we study the FSM-WC with delayed state
feedback. Inner and outer bounds on the capacity-equivocation
region of this model are provided, and we show that these
bounds meet if the channel output for the eavesdropper is
a degraded version of that for the legitimate receiver. These

Fig. 5: The comparison of the secrecy capacities C(g∗)
s and

C
(g)
s for P0 = 100, σ2

G = 1, σ2
B = 100, σ2

w = 100, c = 1,
g(G) = 1, g(B) = 0.5, l = 0.8 and several values of u

bounds are further explained via degraded Gaussian and Gaus-
sian fading examples. Numerical results of these examples
show that the secrecy capacity is decreasing while the feedback
delay is increasing, the larger channel memory (the channel
changes more slowly) leads to a more rapidly decreasing of
the secrecy capacity, and the fading may enhance the secrecy
capacity of the degraded Gaussian FSM-WC with delayed
state feedback. Moreover, note that similar to the well known
fact that the output Y N feedback enhances the capacity-
equivocation region of Wyner’s wiretap channel (see [36]), in
our full paper [37], we show that the receiver’s delayed output
feedback (Y N is also fed back to the transmitter after some
time delay) also enhances the capacity-equivocation region of
the model of this paper.
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