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ABSTRACT

In this paper, we propose the use of recurrent neural net-
works (RNNs) to develop an effective solution to two prob-
lems in electrocardiogram (ECG)-based biometrics: iden-
tification/classification and authentication. Different RNN
architectures with various parameter settings were evalu-
ated, including traditional, long short-term memory (LSTM),
gated recurrent unit (GRU), unidirectional, and bidirectional
networks. Unlike many existing methods, the RNN-based
method does not require any feature extraction. The method
was evaluated using two publicly available datasets: ECG-ID
and MIT-BIH Arrhythmia (MITDB). For the identification
problem, nearly 100% classification accuracy on the ECG-ID
dataset was achieved, and similar results were observed for
the MITDB dataset. For the authentication problem, an RNN
was trained and the hidden state at the final time step was
extracted to make a decision. We evaluated the effect of the
training size on the equal error rate (EER), and showed that
the EER drops from approximately 3.5% to nearly 0% as we
increased the percentage of subjects used for training from
approximately 15% to 80%.

Index Terms— RNN, ECG, Biometrics, Identification,
Authentication

1. INTRODUCTION

Electrocardiogram (ECG)-based biometric systems have been
used for two different applications: identification and authen-
tication. For identification, the system is given input data and
must output the identity of the unknown subject. On the other
hand, in an authentication scenario, there is a claimed iden-
tity associated with the input data and the system must ei-
ther accept or reject the claimed identity. There are numerous
publications in the ECG identification and authentication lit-
erature, and a wide variety of machine learning and pattern
recognition techniques have been utilized.

In this paper, we propose the use of recurrent neural net-
works (RNNs) to develop an effective solution to the two
problems in ECG-based biometrics. Unlike many existing
methods, the RNN-based method does not require any fea-
ture extraction. The ECG data is directly fed to the RNN. To
the best of our knowledge, our study is the first one that ap-

plies RNNs to ECG-based biometrics. The performance of
the proposed method is evaluated using two public datasets
from the Physionet database, and it is shown that it outper-
forms existing methods on both datasets.

The rest of this paper is organized as follows. Related pre-
vious work is reviewed in Section 2. The RNN-based method
is described in Section 3. Experimental results are presented
in Section 4. Finally, concluding remarks are given in Section
5.

2. RELATED WORK

A review on existing methods for ECG-based biometrics can
be found in [1], and more recently in [2]. They can be roughly
grouped into two main categories based on the type of fea-
ture extraction performed – fiducial and non-fiducial methods.
Fiducial methods require the identification of certain charac-
teristic or anchor points on the ECG recordings while non-
fiducial methods do not use characteristic points to generate
the feature set. Some non-fiducial methods use autocorrela-
tion, Fourier or wavelet coefficients as features while others
use the raw heartbeat waveforms as feature vectors. There are
also hybrid methods that combine fiducial and non-fiducial
features. The existing methods can also be grouped based on
their classification methods. Common classification methods
include: k nearest neighbors, nearest center, linear discrimi-
nant analysis (LDA), feedforward neural networks, generative
model classifiers (GMCs), support vector machines (SVMs),
and match/similarity score classifiers.

Although a wide variety of techniques have been pro-
posed, it is difficult to compare methods because their perfor-
mance was reported on different datasets. Odinaka et al. [1]
implemented and compared existing methods using a private
dataset of recordings from 265 subjects. This comparative
study indicated that most algorithms perform well when the
training and testing data for a given subject come from the
same session (referred to as within-session analysis). How-
ever, when training and testing data come from different
sessions (referred to as across-session analysis), performance
degradation occurs. For across-session analysis with training
from multiple sessions, the top two methods had an equal er-
ror rate (EER) of 5.47% and 6.28%, while the average EER of
the other methods was 20.75% (EER is the error rate at which
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the false acceptance and false rejection rates are equal). A
more recent review paper [2] selected 18 journal publications,
and computed a weighted average of classification accuracy
and EER in identification and authentication scenarios, re-
spectively. Each study’s performance was weighted by the
number of subjects used in the study against the total number
of subjects of the selected journal publications. They found
that the weighted average classification accuracy and EER is
94.95% and 0.92%, respectively.

Several authors have used feedforward neural networks
for ECG-based biometrics [2]. Unlike feedforward networks,
RNNs have feedback connections that make them suitable for
processing sequential data such as an ECG signal. For appli-
cations in which there are long-term dependencies, traditional
RNNs are difficult to train because they suffer from vanishing
and exploding gradients [3]. The exploding gradient prob-
lem is typically addressed by clipping gradients whose norms
exceed a threshold, which is known as gradient clipping [4].
Networks that use long short-term memory (LSTM) units [5]
or gated recurrent units (GRUs) [6] have been proposed to
address the vanishing gradient problem. LSTM-based net-
works have recently been used in a wide range of applications,
including phoneme classification [7], handwriting recogni-
tion [8], speech recognition [9], and speaker verification [10].
Dropout, which is a regularization technique used to reduce
overfitting, can also be utilized in RNNs. Zaremba et al. [11]
proposed a method in which dropout is applied only to the
non-recurrent connections. Bidirectional RNNs [7], which
can be used to incorporate future context in addition to past
context, have also been utilized in certain applications.

3. PROPOSED RNN METHOD
3.1. Preprocessing and Segmentation

The ECG recordings used in this work are from the publicly
available ECG-ID [12] and MIT-BIH Arrhythmia (MITDB)
[13] datasets, which are part of the Physionet database [14].
Analysis was performed separately for the two datasets.
Given an ECG recording, the first step is to segment the
recording into individual heartbeat waveforms. Since the R
peak is the most prominent peak, it can be used as a marker
of a given heartbeat waveform. The R peaks were detected
using the Pan-Tompkins algorithm [15]. Once the peaks are
detected, a certain number of samples before and after a given
R peak are concatenated, forming a vector which represents
the heartbeat waveform. For the ECG-ID dataset, 150 sam-
ples before/after the R peak were selected, while 125 samples
were selected for the MITDB dataset (please note that the two
datasets have different sampling rates, as discussed in Section
3.4). After the segmentation procedure is completed, each in-
dividual heartbeat waveform is z-score standardized. Finally,
a certain number of consecutive heartbeat waveforms are
grouped to form a given input sequence, where the number of
heartbeats in the input sequence is a hyperparameter.

Fig. 1. Block diagram of a traditional RNN applied to an input sequence of
t heartbeats (x1x2...xt) from a given subject. The hidden state and output at
the final time step are denoted as ht and yt, respectively. The weight matrices
W (hh), W (hx), and W (hy) are parameters optimized during training, and
σ represents an element-wise non-linearity such as tanh or ReLU.

3.2. Identification Procedure

For the identification scenario, the ECG recordings are di-
vided into training and testing sets. The division depends
on the type of analysis performed. For within-session anal-
ysis, training and testing data for a given subject are obtained
from the same recording or session. In contrast, for across-
session analysis, training and testing data for a given subject
are obtained from different recordings. Each training or test-
ing sequence is of size N × D, where N is the number of
heartbeats in a given sequence and D is the dimension of
each heartbeat waveform. One-hot encoding is used for the
sequence labels. Specifically, if a given sequence is from the
ith subject, then the corresponding label is an M -length vec-
tor, where M is the total number of subjects, and the jth ele-

ment of this vector is given by zj =

{
1
0

j = i
j 6= i

. The pa-

rameters or weights of an RNN with a given architecture are
optimized using the training set. The hidden state at the final
time step, or summary vector, is multiplied by a weight matrix
(optimized during the training process) and fed to the softmax
function to yield a probability distribution over the set of sub-
jects (referred to as class probabilities). Once the RNN has
been successfully trained, the weights are fixed, and testing
sequences are fed to the trained network. A classification de-
cision for each testing sequence is made by selecting the class
with the highest assigned probability. A block diagram illus-
trating how a traditional RNN is used to classify a sequence
of heartbeats is shown in Figure 1. In a traditional RNN, the
hidden state at a given time step is computed as a linear com-
bination of the previous hidden state and the current input.
GRU and LSTM networks have similar block diagrams, how-
ever the update of the hidden state is more complex.

3.3. Authentication Procedure

For the authentication scenario, the ECG recordings are di-
vided into three datasets: training, enrollment, and evalua-
tion. The subjects used during training are different than those
used during enrollment/evaluation. Furthermore, the subjects
in the enrollment and evaluation sets are identical. Training
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of the RNN is performed in the way described in the pre-
vious subsection, with the softmax layer present. After the
RNN has been successfully trained, the softmax layer is re-
moved. The testing phase consists of two stages: enrollment
and evaluation. In the enrollment phase, the trained network
is used to extract the summary vector (i.e. the hidden state at
the final time step) from each enrollment sequence. For each
subject, there are multiple enrollment sequences, each pro-
ducing a different summary vector, and the enrollment model
of a given subject is taken to be the average of these vectors.
The subjects in the evaluation set are identical to those in the
enrollment set, except new sequences are fed to the RNN. An
evaluation sequence from a given subject is fed to the net-
work, yielding a summary vector. This summary vector is
compared to each enrollment model (one for each subject in
the enrollment/evaluation set) using a similarity metric (e.g.
cosine distance), and an authentication decision for each com-
parison is made based on a given threshold. The claimed iden-
tity is accepted or rejected depending on whether the distance
is less than or greater than the given threshold, respectively.
The advantage of the summary vector approach is that the
network can be trained using a given number of subjects, and
testing (enrollment/evaluation) can be performed on any other
subjects that were not necessarily part of the training set. In
this method, the trained RNN can be viewed as a feature ex-
tractor, in which the summary vector represents the extracted
feature vector; similar techniques have been used for speaker
verification [10].

3.4. Dataset and Implementation

The ECG-ID dataset contains 310 recordings, obtained from
90 subjects (44 male and 46 female). Each recording is ECG
lead I, recorded over a duration of 20 seconds, and digitized
at 500 Hz with 12-bit resolution over a nominal ±10mV
range. Two recordings per subject were used for the analysis,
because only a small subset of the subjects have more than
2 recordings. The MITDB dataset contains 48 two-channel
recordings, obtained from 47 subjects (25 male and 22 fe-
male). Each subject has only one recording available, except
for one subject that has two recordings (records 201 and 202);
only record 201 was used for this subject. The recordings
were digitized at 360 samples per second per channel with 11-
bit resolution over a 10mV range. Only the upper signal was
used because QRS complexes are usually prominent in the
upper signal; a notable exception is record 114, for which the
signals are reversed. Both the ECG-ID and MITDB datasets
contain pre-filtered data, which was used in this study.

R peak detection and generation of the training and test-
ing data were performed in Matlab, while implementation
and training of RNNs were performed using TensorFlow [16].
The cost function used during training is the cross-entropy
error, and optimization was performed using the Adam al-
gorithm [17] with a learning rate of 0.0001. We evaluated
different RNN architectures with different parameter settings.

Table 1. ECG-ID Within-Session Analysis (Identification): Classification
accuracy for selected parameter settings.

The architectures we tested are LSTM, GRU, and traditional
RNNs, and we tested both unidirectional and bidirectional ar-
chitectures. The RNN parameters are the number of layers,
number of cells or units per layer, and dropout rate. Hyperpa-
rameter optimization was performed using random search.

For the identification problem, the classification accuracy
was computed using the testing set. A classification decision
is made for each testing sequence, and the classification accu-
racy is defined to be the percentage of correctly classified test-
ing sequences. For the authentication scenario, the equal error
rate (EER) was computed in the following manner. Given a
summary vector obtained from the evaluation data of a partic-
ular subject, this vector is compared to each enrollment model
(one model for each subject in the enrollment/evaluation set)
using cosine distance as a similarity metric. An authentication
decision for each comparison is then made based on a given
threshold. Thus, for each summary vector obtained from the
evaluation dataset, there is a certain number of each of the fol-
lowing quantities: true acceptance, true rejection, false accep-
tance, false rejection. Each of these 4 quantities is summed
across the set of summary vectors obtained from the evalu-
ation dataset, and the false acceptance rate (FAR) and false
rejection rate (FRR) are computed. The threshold is then var-
ied to yield a plot of FAR and a plot of FRR, and the EER is
taken to be the intersection of these two curves.

4. EXPERIMENTAL RESULTS
4.1. Identification Analysis

Several existing methods have used the MITDB and ECG-ID
datasets. Of those that used the MITDB dataset, the reported
classification accuracy ranged from 93.1% to 99.57% (fusion
of two leads) [18, 19, 20], and of those that used the ECG-
ID dataset, the reported accuracy ranged from 82.3% to 96%
[12, 19]. The RNN-based method outperforms these existing
methods on both datasets. Both within-session and across-
session analysis were performed; for the MITDB dataset, only
within-session analysis was performed (only one recording
per subject was available). In MITDB within-session anal-
ysis, 18 training and 18 testing beats per subject were used.
In the case of ECG-ID within-session analysis, for a given
subject, 9 training and 9 testing beats from each session were
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Table 2. ECG-ID Across-Session Analysis (Identification): Classification
accuracy for selected parameter settings.

Table 3. MITDB Within-Session Analysis (Identification): Classification
accuracy for selected parameter settings.

used, for a total of 18 training and 18 testing beats per sub-
ject. In ECG-ID across-session analysis, for a given subject,
18 training beats were taken from one session and 18 testing
beats were taken from the other session.

Tables 1-3 show the classification accuracy for selected
RNN architectures and parameter settings. Please note that
the results shown are for unidirectional networks with zero
dropout. The results show that 100% classification accuracy
is achieved on both datasets, using a unidirectional LSTM
network with 1 hidden layer (250 hidden units) and zero
dropout. As the results indicate, LSTM networks performed
better than GRU and traditional RNNs. Furthermore, it can
be seen that as the length of the input sequence increases, the
improvement in performance is more significant for LSTM
networks, as compared to GRU and traditional RNNs. In ad-
dition, we found that bidirectional architectures, dropout, and
multiple layers did not significantly improve performance.
Also, feedforward neural network architectures with differ-
ent parameter settings were evaluated, and the classification
accuracy was slightly lower than that of traditional RNNs.

4.2. Authentication Analysis

For the ECG-ID dataset, 9 beats were taken from each ses-
sion for a given subject in the training set, for a total of 18
training beats per subject, while for each subject in the en-
rollment/evaluation set, 18 enrollment beats were taken from
one session and 18 evaluation beats were taken from the other
session. For the MITDB dataset, 18 beats were taken for a
given subject in the training set, and for each subject in the
enrollment/evaluation set, 18 beats were taken for enrollment
and 18 beats were taken for evaluation. We observed patterns

Fig. 2. Authentication analysis: Equal error rate (%) as a function of the
percentage of subjects used in training, for the ECG-ID and MITDB datasets.

similar to those discussed in Section 4.1. In addition, we eval-
uated the effect of varying the percentage of subjects used for
training. Figure 2 shows the EER as a function of the percent-
age of subjects used for training, for both the ECG-ID and
MITDB datasets. The results shown are for input sequences
consisting of 9 heartbeats. The figure shows that the EER
decreases as the training size increases, and furthermore, that
the proposed method is able to achieve 0% EER when the per-
centage of subjects used for training is approximately 80%.

5. CONCLUSION

This paper has demonstrated that an LSTM-based RNN is
a more effective tool for ECG-based biometric identification
and authentication, as compared to existing methods that used
the ECG-ID or MITDB datasets. For both applications, the
proposed method does not require extraction of fiducial fea-
tures nor features such as autocorrelation and wavelet coeffi-
cients; the ECG data is directly fed to the RNN. For the identi-
fication problem, an RNN is trained as a classifier, and 100%
classification accuracy was achieved for both datasets. For
the authentication scenario, a summary vector approach was
utilized. The primary advantage of this technique is that au-
thentication can be performed on any number of subjects not
seen during training. We evaluated the effect of the training
size on the EER, and found that the EER drops to 0% when
the percentage of subjects used for training is increased to ap-
proximately 80%. The results on the MITDB dataset, which
contains recordings of subjects with arrhythmia, suggest that
the proposed method is robust to some abnormal cardiac con-
ditions. A more extensive analysis is needed to evaluate the
robustness of the proposed method to other abnormal cardiac
conditions, as well as different physiological conditions. This
work indicates that LSTM-based RNNs are a promising di-
rection for both ECG-based biometric identification and au-
thentication.
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