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ABSTRACT

Metric learning is an important issue in person re-identification,
and Mahalanobis-distance based metric learning methods pre-
vail in this field. All of these approaches can be considered
as equivalently projecting all samples to a new metric space
and calculating the Euclidean distance there. However, the
performance of distinguishing similar samples from dissim-
ilar ones via absolute distance is limited. In this paper, we
suggest using relative distance instead. We adopt a bi-target
perspective. The core idea is to construct a virtual opposite
target for each original target. Then, the similarity between
a sample and the others is judged by using both the original
and opposite targets of the sample. In this way, we propose a
bi-target metric method, named TAICHI distance. Consider-
ing simplicity and efficiency, we follow the KISSME metric
in this paper. Extensive evaluations on challenging datasets
confirm the effectiveness of the proposed method.

Index Terms— person re-identification, metric learning,
TAICHI distance

1. INTRODUCTION

Person re-identification, aiming to identify images of the
same person from various cameras configured in different
places, has attracted much attention in the signal processing
community [1–8]. Due to low resolution, motion blur, view
change, and illumination variation in the individual’s appear-
ance, constructing a discriminative representation to adapt
to different camera conditions is extremely challenging [9–
16]. Distance metric based methods, which aim at seeking a
proper distance metric, have gradually become a main stream
procedure in solving the person re-identification problem.
In addition, if we could find excellent visual descriptions
for person appearance, the metric could still promote the
results [17].

* R. Hu is the corresponding author, and is also with the National Engi-
neering Research Center for Multimedia Software, the Collaborative Innova-
tion Center of Geospatial Technology, and the Hubei Provincial Key Labora-
tory of Multimedia and Network Communication Engineering,Wuhan Uni-
versity.
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Fig. 1. An example illustrating the relationships mere-
ly with one target (upper) versus after the opposite tar-
get is introduced (lower). In the figure,xi denotes the tar-
get, xj denotes the sample similar to the target,xl denotes
the dissimilar sample, andx−

i denotes the introduced oppo-
site target. (a) The distanced(xi, xj) is equal to the distance
d(xi, xl). (b) By introducing an opposite targetx−

i , the dis-
tanced(x−

i , xj) is greater than the distanced(x−
i , xl).

Traditional distance metrics, such as Euclidean Distance,
Minkowski Distance, Manhattan Distance, Chebyshev Dis-
tance, are non-learning and fixed metrics, and the distance
is directly calculated by the untransformed feature differ-
ence. The effectiveness of these handcrafted metric modelsis
proved to be limited because of the appearance’s large varia-
tion [18]. In comparison, the well-studied Mahalanobis-based
distance metric learning helps to find global transformations
of the feature space such that relevant feature dimensions are
emphasized while irrelevant ones are suppressed, and plays
an important role. It has been extended in a number of follow-
up methods, including LMNN [19], ITML [20], IDML [21],
PRDC [22], LADF [23] and KISSME [24].

The difference among the above methods mainly lies
in their different objective functions, which are designed
for different specific tasks with different constraints. Af-
ter the metric matrixM is learnt, all of the above metric
learning methods utilize a uniform form asdM(xi, xj) =
(xi − xj)

⊤
M(xi − xj) to obtain the distance between a pair
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of samples(xi, xj). Meanwhile, the distance can be also
rewritten asdM(xi, xj) = ‖Lxi − Lxj‖

2, when performing
eigenvalue decomposition onM with M = L

⊤
L. With this

definition, it is easy to see that the essence of the metric learn-
ing is to seek a suitable projection matrixL, transforming the
original feature space to a new one [25]. Then, the distance is
computed as an Euclidean distance. Here, we name this kind
of distance asabsolute distance.

As is known, a good distance metric should compute a s-
mall distance for a pair of similar samples and a large distance
for a pair of dissimilar samples. Let us focus on a special case
(Fig.1(a)): after being projected to the new feature space,the
distance from the targetxi to a similar samplexj is the same
as that to a dissimilar samplexl. In this condition, it is still im-
possible to distinguish the similar sample from the dissimilar
one. To solve this kind of problem by breaking the preserva-
tion property of the equality relationship in the classic metric
learning algorithm, this paper introduces a virtual target, to
re-define the transformed sample distance. For instance, ac-
cording to the targetxi, if we can construct a virtual target
x−
i which is a dissimilar sample ofxi, project this target and

samples to a new metric space, and make the distances from
the virtual target toxj andxl different, the samples can be
separated indirectly.

Inspired by the famous Chinese ancient Yin-Yang philos-
ophy: everything in the universe can be viewed as a product
of a constant conflict between opposites - Yin and Yang [26],
we introduce a bi-target concept. The original target acts as
the Yang target. A Yin (invisible) target is introduced, acting
as the constructed virtual target described above. However,
in the Yin-Yang philosophy, the Yin and the Yang are oppo-
site to each other, and the constructed Yin target should be
the dissimilar sample of the Yang target. When the nearness
to the Yang targetxi cannot distinguish two samplesxj and
xl, an alternative way is to find the farness of the two samples
from the Yin targetx−

i . Here,x−
i is a duality ofxi in terms

of a certain criterion. Fig.1(b) shows that the distance from
the Yin targetx−

i to the samplexl is smaller than that toxj .
Therefore, we consider thatxj is relatively more similar to
the target thanxl. We argue that absolute distances between
images are not necessarily the best for person re-identification
tasks that put more emphasis on the relative order or ranking
positions. The essence of the ranking requirement is to identi-
fy whether a sample is farther away from or closer to the target
than other samples [27, 28]. Therefore,relative distance is
more important to satisfy these conditions.

Based on the above idea, we propose theTAICHI dis-
tanceto demonstrate the relative distance. Learned from [24],
we consider two independent learning process in a statistical
perspective. The relative distance is defined by the likelihood
ratio of the probability of the distance between the Yang tar-
get sample pair to the probability of the distance between the
Yin target sample pair. We evaluate our method on the VIPeR
dataset [29] and CUHK Campus dataset [30], which outper-

forms the state-of-the-art metric learning methods. In addi-
tion, with two threads running in parallel, it runs as fast asthe
KISSME method in the training process, and is more efficient
than the other approaches.

2. TAICHI DISTANCE

Learning a distance metric based on the class of Mahalanobis
distance functions has gained considerable interest in person
re-identification. In general, a Mahalanobis distance metric
measures the squared distance between two data points by a
uniform metricM. It is proved that LMNN, ITML, LDML,
PRDC and LDAF rely on an iterative optimization scheme,
which is computationally expensive for large scale dataset-
s, while the KISSME introduces a non-iterative formulation,
which builds on a statistical inference perspective, and isvery
effective, simple and fast. Given this, we propose the TAICHI
distance also in a statistical inference perspective, although it
applies to other metrics as well.

2.1. Yang Metric Learning

We follow the KISSME method [24] to learn the Yang metric.
To facilitate the discussion, we make the following definition-
s. Pairs of samples from similar setS = {(xi, xj)|y(xi) =
y(xj)} or dissimilar setD = {(xi, xj)|y(xi) 6= y(xj)} are
utilized to train the Mahalanobis-like metricM. Here,y(·) in-
dicates the class label of a sample. Each samplexi ∈ R

Nx×1

is Nx dimension feature vector.Cij = (xi − xj)(xi − xj)
⊤

is used to denote the outer product of pairwise differences.
And ΣS andΣD are the covariance matrices ofS andD,
which can be estimated asΣS = 1

|S|

∑
(xi,xj)∈S Cij ,ΣD =

1
|D|

∑
(xi,xj)∈D Cij .

Considering two independent generation processes for ob-
served commonalities of similar and dissimilar pairs, the pro-
posed method defines the distance of a sample pair as the
probability that it belongs to a dissimilar pair or a similarpair.
From a statistical inference point of view the optimal statis-
tical decision on whether a pair is dissimilar or not can be
obtained by a likelihood ratio test. Therefore, we test the hy-
pothesisH0 that a pair(xi, xj) is dissimilar againstH1 that

it is similar: δ(xi, xj) = log(
p(xi,xj|H0)
p(xi,xj|H1)

) = log(
f(xi,xj ,θ0)
f(xi,xj ,θ1)

),

whereδ is the log-likelihood ratio, andf(xi, xj , θ) is a PDF
(probability density function) with the parameter setθ. A high
value ofδ means thatH0 is validated. In contrast, a low value
means thatH0 is rejected and the pair is considered as similar.
To be independent of the actual locality in the feature space,
we cast the problem in the space of pairwise differences with
zero mean. Assuming a Gaussian structure of the difference
space, the equation can be re-written as

δ(xi, xj) = log(

1
√

2πΣD

exp(−1/2(xi−xj)
⊤Σ−1

D (xi−xj))

1
√

2πΣS

exp(−1/2(xi−xj)⊤Σ
−1

S (xi−xj))
). (1)

2053



By taking the log and discarding the constant terms, Eq.1
can be simplified toδ(xi, xj) = (xi−xj)

⊤(Σ−1
S −Σ−1

D )(xi−
xj). This is the expression of the absolute distance of the
Yang Metric, where the metricM is expressed asM = Σ−1

S −
Σ−1

D . We can see that the metric is computed fromCij of
similar pairs and dissimilar pairs, which is depending on the
vector differencexi − xj . In the following, we introduce a
relative distance, which not only exploits two different met-
rics, but also brings another form of features relationship.

2.2. Constructing the Pre-train Yin target

All the samples are located in a limited space, and they have
a center, which can be estimated from the mean value of the
samples. Letu stand for the sample center.u is calculated
asu = 1

N

∑N

k=1 xk, whereN denotes the number of all the
training samples. In the Yin-Yang philosophy, every thing
will trend toward a balance of Yin and Yang. We argue that
the Yin target and the Yang target are opposite, and in this
paper, we choose the symmetric point of the Yang target with
respect to the center as the Yin target, sou = 1

2 (x
+
i + x−

i ).
Then, fromx+

i + x−
i = 2u = v andx+

i = xi, we directly
compute the Yin target asx−

i = v − xi, wherev denotes a
constant vector related to the samples centeru. Following this
rule, for each targetxi, its corresponding pre-train Yin target
is constructed asx−

i = 2
N

∑N

k=1 xk − xi. For each sample
pair(xi, xj), a new sample pair(x−

i , xj) is constructed. Then
pairs of samples form the similar setS′ = {(x−

i , xj)|y(xi) 6=
y(xj)} and dissimilar setD′ = {(x−

i , xj)|y(xi) = y(xj)}
for Yin Metric learning.

2.3. TAICHI Metric Learning

Whether a Yin pair is dissimilar or not is also obtained by
a likelihood ratio test as the Yang Metric Learning does. By
duplicating and expanding the progress in Yang Metric Learn-
ing, we test not only the hypothesisH0 that a pair(xi, xj) is
dissimilar againstH1 that the pair is similar, but also the hy-
pothesisH ′

1 that a pair(x−
i , xj) is similar againstH ′

0 that the

pair is dissimilar:δ′(xi, xj) = log(
p(xi,xj|H0)p(x

−

i
,xj|H

′

1
)

p(xi,xj|H1)p(x
−

i
,xj|H′

0
)
) =

log(
f(xi,xj,θ0)f(x

−

i
,xj ,θ

′

1
)

f(xi,xj,θ1)f(x
−

i
,xj ,θ

′

0
)
), whereδ′ is the new log-likelihood

ratio or relative distance, andf(x−
i , xj , θ

′) is a PDF with
the parameter setθ′. Assuming zero-mean Gaussian distri-
butions, and taking the log and discarding the constant terms,
the equation can be simplified to Eq.2. Here,ΣS′ andΣD′

are the covariance matrices ofS′ andD′. To increase read-
ability, we introduce the notationBij = (x−

i − xj)(x
−
i −

xj)
⊤. S′ andD′ can be respectively computed byΣS′ =

1
|S′|

∑
(x−

i
,xj)∈S′ Bij ,ΣD′ = 1

|D′|

∑
(x−

i
,xj)∈D′ Bij .

δ′(xi, xj) = (xi − xj)
⊤(Σ−1

S − Σ−1

D )(xi − xj)

− (x−

i − xj)
⊤(Σ−1

S′ − Σ−1

D′ )(x
−

i − xj).
(2)

Fig. 2. Two pairs of samples in a 2D sample space. The
blue line denotes the distance of a sample pair (vector differ-
ence), which traditional metric learning method tries to opti-
mize. The red line denotes the distance between the sample
v and the vector commonness, which the new metric tries to
enlarge.

From the Eq.2, we can see that the learning process ac-
tually obtains two metrics in constructing relative distances.
The Yang metric is the same as the original oneMyang =
Σ−1

S −Σ−1
D , and theYin metric can be expressed asMyin =

Σ−1
S′ − Σ−1

D′ . The metrics are respectively trained fromCij

andBij , which are depending on not only the vector differ-
ence, but also the other feature relationship introduced bythe
Yin target.

3. ANALYSIS OF TAICHI DISTANCE

Considering Yin targetx−
i = v − xi, Eq.2 changes to

δ′(xi, xj) = (xi − xj)
⊤
Myang(xi − xj)

− (xi + xj − v)⊤Myin(xi + xj − v).
(3)

The above distance function has the following desirable
properties:

(1) Fully informed distance decision.The distance func-
tion depends not only onxi−xj, thevector differenceusual-
ly considered by conventional metric learning, but also on the
vector commonnessxi + xj , which contains orthogonal in-
formation of(xi, xj) that would otherwise be neglected when
usingxi − xj alone.

(2) Distances more discriminative. Eq.3 utilizes both
the metricMyang andMyin, where the new metricMyin

is designed byBij = (xi + xj − v)(xi + xj − v)⊤. This
has been neglected before where onlyMyang is used. Fig.2
demonstrates the effectiveness ofMyang andMyin in a 2D
sample space. It shows that traditional metricMyang con-
siders to pull the similar samples near to the targets, whilethe
new metricMyin simultaneously give more power to push the
vector commonnessxi+xj away from the samplev. This will
make the sample pairs more decentralized, at the same time,
decrease the confusing possibility.
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(a) VIPeR/Basic features
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(b) VIPeR/SCNCD
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(c) VIPeR/LOMO
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(d) CUHK/LOMO

Fig. 3. Person re-identification results. In (a) (b) (c), methods are evaluated on the VIPeR dataset. In(a), basic features are
used. In (b) the SCNCD feature is exploited. In (c) the LOMO feature is exploited. In (d) the LOMO feature is exploited on the
CUHK Campus dataset.

4. EXPERIMENTS

Datasets: To show the effectiveness of the TAICHI distance,
we conduct experiments on two different datasets with dif-
ferent features. The widely used VIPeR dataset [29] contains
632 person image pairs of two different camera views. All im-
ages of individuals are normalized to a size of128×48 pixels.
Most of the example pairs contain a viewpoint change, mak-
ing the dataset one of the most challenging datasets currently
available for person re-identification. As the compared metric
learning approaches did, we divide 632 image pairs randomly
into two sets of 316 image pairs each, one for training and
the other for testing. The CUHK Campus dataset [30] was
captured with two camera views in a campus environment. It
contains 971 persons, and each person has two images in each
camera view. All images were scaled to160× 60 pixels. The
persons were split to two groups, 485 for training and 486 for
test.

Features: In order to demonstrate the independence of
the proposed method to different features. We conducted ex-
periments on the basic features described in [24], the salient
color names (SCNCD [11]) feature, and the Local Maximal
Occurrence Representation (LOMO [10]) feature.

This paper reports Cumulative Matching Characteristic
(CMC) [31] curves of various algorithms, which represent the
expectation of the true match found within the first n ranks.
To obtain a reasonable statistical significance, the experiment
is repeated 20 times, and the average results are reported in
Fig.3(a), Fig.3(b), Fig.3(c) and Fig.3(d). From the figures, we
can conclude that the proposed TAICHI distance significantly
outperforms the KISSME method. Moreover, in Table 1, this
paper compares the performance of our approach in the range
of the first 50 ranks to state-of-the-art methods on the VIPeR
dataset. As can be seen, we obtain competitive results when
the TAICHI distance is used.

Generally speaking, training time cost is one of the main
evaluating indicator of metric learning approaches. We can
observe a common fact that traditional methods all rely on
an iterative optimization scheme which is computationally
expensive. In comparison, a non-iterative metric learning
method, which builds on a statistical inference perspective,

Table 1. Person re-identification matching rates (%) on the
VIPeR dataset.

Method 1 10 25 50 time
LADF [23] 30 79 93 97 781s
PRDC [22] 19.9 49.4 70.5 84.8 904s

SCNCD [11] 20.7 60.6 79.1 90.4 −
KISSME [24] 19.6 62.2 80.7 91.8 0.007s

TAICHI 20.54 67.51 85.83 95.02 0.007s
KISSME+LOMO 25.95 74.53 90.51 97.15 0.019s
TAICHI +LOMO 29.11 79.75 93.35 97.94 0.019s
KISSME+SCNCD 32.52 76.67 89.97 94.56 0.010s
TAICHI +SCNCD 33.68 80.38 93.04 97.31 0.010s

is very fast, especially when the amount of data constant-
ly grows. Following the non-iterative framework KISSME,
from the Table 1, we can also see that the TAICHI distance is
computationally much more efficient than LADF and PRDC.

5. CONCLUSION

We convert the traditional absolute distance task to a more
proper relative distance task, and adopt a bi-target perspec-
tive to reform existing metric learning methods and proposed
the TAICHI distance. Our method improves the original
KISSME method significantly, and also achieves the best re-
sults compared to state-of-the-art metric learning approaches.

6. ACKNOWLEDGMENT

The research was supported by National High Technology
Research and Development Program of China (2015AA016306),
Natural Science Foundation of China (61231015, 61671336,
61671332, 61562048), Natural Science Foundation of Jiang-
Su Province (BK20160386), Natural Science Foundation of
Hubei Province (2016CFB573), Technology Research Pro-
gram of Ministry of Public Security (2016JSYJA12), EU FP7
QUICK project (PIRSES-GA-2013-612652), and Jiangxi
Youth Science Foundation of China (20151BAB217013).

2055



References
[1] Cong Ma, Zhenjiang Miao, and Min Li, “Saliency preprocess-

ing for person re-identification images,” inICASSP, 2016.

[2] Liu Hong, Ma Liqian, and Wang Can, “Body-structure based
feature representation for person re-identification,” inICASSP,
2015.

[3] J. Oliver, Antonio Albiol, Antonio Albiol, and Jose Manuel
Mossi, “Re-identifying people in the wild,” inICASSP, 2013.

[4] Kai Liu, Xin Guo, Zhicheng Zhao, and Anni Cai, “Person re-
identification using matrix completion,” inICIP, 2013.

[5] Yanna Zhao, Xu Zhao, and Yuncai Liu, “Person re-
identification by free energy score space encoding,” inICIP,
2014.

[6] Junjun Jiang, Ruimin Hu, Zhongyuan Wang, and Zhihua Cai,
“Cdmma: Coupled discriminant multi-manifold analysis for
matching low-resolution face images,”Signal Process., vol.
124, pp. 162–172, 2016.

[7] Chen Chen, Mengyuan Liu, Baochang Zhang, Jungong Han,
Junjun Jiang, and Hong Liu, “3d action recognition using
multi-temporal depth motion maps and fisher vector,” inIJ-
CAI, 2016.

[8] Mengyuan Liu, Hong Liu, Chen Chen, and Maryam Najafi-
an, “Energy-based global ternary image for action recognition
using sole depth sequences,” in3DV, 2016.

[9] Michela Farenzena, Loris Bazzani, Alessandro Perina, Vitto-
rio Murino, and Marco Cristani, “Person re-identification by
symmetry-driven accumulation of local features,” inCVPR,
2010.

[10] Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z Li, “Per-
son re-identification by local maximal occurrence representa-
tion and metric learning,” inCVPR, 2015.

[11] Yang Yang, Jimei Yang, Junjie Yan, Shengcai Liao, Dong
Yi, and Stan Z Li, “Salient color names for person re-
identification,” inECCV, 2014.

[12] Rui Zhao, Wanli Ouyang, and Xiaogang Wang, “Unsupervised
salience learning for person re-identification,” inCVPR, 2013.

[13] Le An, Xiaojing Chen, Songfan Yang, and Xuelong Li, “Per-
son re-identification by multi-hypergraph fusion,”IEEE Trans.
Neural Netw. Learn. Syst., 2016.

[14] Le An, Mehran Kafai, Songfan Yang, and Bir Bhanu, “Person
reidentification with reference descriptor,”IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 26, no. 4, pp. 776–787, 2016.

[15] Le An, Xiaojing Chen, Songfan Yang, and Bir Bhanu, “Sparse
representation matching for person re-identification,”Inform.
Sciences, vol. 355, pp. 74–89, 2016.

[16] Jin Wang, Zheng Wang, Changxin Gao, Nong Sang, and Rui
Huang, “Deeplist: Learning deep features with adaptive list-
wise constraint for person re-identification,”IEEE Trans. Cir-
cuits Syst. Video Technol., 2016.

[17] Zheng Wang, Ruimin Hu, Chao Liang, and Yi Yu, “Zero-
shot person re-identification via cross-view consistency,” IEEE
Trans. Multimedia, vol. 18, no. 2, pp. 260–272, 2016.

[18] Mang Ye, Chao Liang, Yi Yu, Zheng Wang, Qingming Leng,
Chunxia Xiao, Jun Chen, and Ruimin Hu, “Person re-
identification via ranking aggregation of similarity pulling and
dissimilarity pushing,” IEEE Trans. Multimedia, vol. 18, no.
12, pp. 2553, 2016.

[19] Kilian Q. Weinberger and Lawrence K. Saul, “Distance metric
learning for large margin nearest neighbor classification,” J.
Mach. Learn. Res., vol. 10, no. 1, pp. 207–244, 2009.

[20] Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and In-
derjit S Dhillon, “Information-theoretic metric learning,” in
NIPS, 2007.

[21] Matthieu Guillaumin, Jakob Verbeek, and Cordelia Schmid,
“Is that you? metric learning approaches for face identifica-
tion,” in ICCV, 2009.

[22] Wei-Shi Zheng, Shaogang Gong, and Tao Xiang, “Person re-
identification by probabilistic relative distance comparison,” in
CVPR, 2011.

[23] Zhen Li, Shiyu Chang, Feng Liang, Thomas S Huang, Lian-
gliang Cao, and John R Smith, “Learning locally-adaptive de-
cision functions for person verification,” inCVPR, 2013.

[24] Martin Kostinger, Martin Hirzer, Paul Wohlhart, PeterM Roth,
and Horst Bischof, “Large scale metric learning from equiva-
lence constraints,” inCVPR, 2012.

[25] Yimin Wang, Ruimin Hu, Chao Liang, and Chunjie Zhang,
“Camera compensation using a feature projection matrix for
person reidentification,”IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 24, no. 8, pp. 1–6, 2013.

[26] Minh Nhut Nguyen, Daming Shi, and C Quek, “Fcmac-byy:
Fuzzy cmac using bayesian ying-yang learning,”IEEE Trans.
Syst. Man, Cybern. B, Cybern., vol. 36, no. 5, pp. 1180–90,
2006.

[27] David G Lowe, “Distinctive image features from scale-
invariant keypoints,” Int. J. Comput. Vision, vol. 60, no. 2,
pp. 91–110, 2004.

[28] Junjun Jiang, Ruimin Hu, Zhongyuan Wang, Zhen Han, and
Jiayi Ma, “Facial image hallucination through coupled-layer
neighbor embedding,”IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 26, no. 9, pp. 1–1, 2015.

[29] Douglas Gray, Shane Brennan, and Hai Tao, “Evaluating ap-
pearance models for recognition, reacquisition, and tracking,”
in PETS, 2007.

[30] Wei Li, Rui Zhao, and Xiaogang Wang, “Human reidentifica-
tion with transferred metric learning,” inACCV, 2012.

[31] Xiaogang Wang, Gianfranco Doretto, Thomas Sebastian,Jens
Rittscher, and Peter Tu, “Shape and appearance context mod-
eling,” in ICCV, 2007.

2056


