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ABSTRACT

Metric learning is an importantissue in person re-ideratfan,
and Mahalanobis-distance based metric learning methess pr
vail in this field. All of these approaches can be considered
as equivalently projecting all samples to a new metric space
and calculating the Euclidean distance there. However, the
performance of distinguishing similar samples from dissim
ilar ones via absolute distance is limited. In this paper, we
suggest using relative distance instead. We adopt a kettarg
perspective. The core idea is to construct a virtual opposit
target for each original target. Then, the similarity begwe

(a) The original learnt space
X

d(x;,x;) = d(x,,%,)

X and X cannot be seperated

d('xi’x,') =d(x,,x,)
d(x;,x;)>d(x;,x)

X; and X; arc opposite

(b) The new learnt space where
an opposite target introduced

X ; is more similar to X’.

than X

a sample and the others is judged by using both the original
and opposite targets of the sample. In this way, we proposegg 3 ap example illustrating the relationships mere-
bi-target metric method, named TAICHI distance. Consic_jer]y with one target (upper) versus after the opposite tar-
ing simplicity and efficiency, we follow the KISSME metric o is introduced (lower). In the figure,z; denotes the tar-
in thjs paper. Ex;ensive evaluations on challenging daiaseget' «; denotes the sample similar to the targatdenotes
confirm the effectiveness of the proposed method. the dissimilar sample, ane” denotes the introduced oppo-

Index Terms— person re-identification, metric learning, site target. (a) The distandgz;, z;) is equal to the distance
TAICHI distance d(z;, ;). (b) By introducing an opposite targef , the dis-

tanced(z; , x;) is greater than the distandéx; , x;).
1. INTRODUCTION Traditional distance metrics, such as Euclidean Distance,

Person re-identification, aiming to identify images of theMinkowski Distance, Manhattan Distance, Chebyshev Dis-

same person from various cameras configured in differerjeCe; are non-learning and fixed metrics, and the distance

places, has attracted much attention in the signal prougssi 'S directly calculated by the untransformed feature differ
community [1-8]. Due to low resolution, motion blur, view ence. The effectiveness of these handcrafted metric mdels

change, and illumination variation in the individual's @gp- proved to be Iimiteq because of the a.ppearance’s Iarge-varia
ance, constructing a discriminative representation tgpda fion [18]- In comparison, the well-studied Mahalanobisa
to different camera conditions is extremely challenging [9 distance metric learning helps to find global transfornregio

16]. Distance metric based methods, which aim at seeking%f the feature space such that relevant feature dimensiens a

proper distance metric, have gradually become a main streafi"Phasized while irrelevant ones are suppressed, and plays

procedure in solving the person re-identification problem&n importantrole. It has been extended in a number of follow-

In addition, if we could find excellent visual descriptions YP Methods, including LMNN [19], ITML [20], IDML [21],
for person appearance, the metric could still promote thERDC [22_], LADF [23] and KISSME [24]. ) )
results [17]. _ Thfe d!fference among the a_bove me_thods ma|n_ly lies
in their different objective functions, which are designed
*R. Huis the corresponding author, and is also with the Neli€ngi-  for different specific tasks with different constraints. - Af

neering Research Center for Multimedia Software, the Gotiative Innova- ; ; ; ;
tion Center of Geospatial Technology, and the Hubei Praairkey Labora- ter th.e metric matr|>§1\_/[ IS 'ear_”t’ all of the above metric
tory of Multimedia and Network Communication Engineerittjuhan Uni- ~ 1€&rning methods utilize a Ur_“form f_orm aba (v, ;) = )
versity. (z; — z;) "M(x; — z,) to obtain the distance between a pair
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of samples(z;, z;). Meanwhile, the distance can be alsoforms the state-of-the-art metric learning methods. Ini-add
rewritten asdn (2, 2;) = ||La; — La; ||, when performing  tion, with two threads running in parallel, it runs as fastres
eigenvalue decomposition dvi with M = LTL. With this  KISSME method in the training process, and is more efficient
definition, it is easy to see that the essence of the metnindea than the other approaches.

ing is to seek a suitable projection matfixtransforming the

original feature space to a new one [25]. Then, the distaice i 2 TAICHI DISTANCE
computed as an Euclidean distance. Here, we name this kind
of distance asbsolute distance Learning a distance metric based on the class of Mahalanobis

As is known, a good distance metric should compute a sdistance functions has gained considerable interest soper
mall distance for a pair of similar samples and a large destan re-identification. In general, a Mahalanobis distance imetr
for a pair of dissimilar samples. Let us focus on a specia# casmeasures the squared distance between two data points by a
(Fig.1(a)): after being projected to the new feature spdme, uniform metricM. It is proved that LMNN, ITML, LDML,
distance from the targey; to a similar sample;; is the same PRDC and LDAF rely on an iterative optimization scheme,
asthatto a dissimilar sampig. In this condition, itis stillim-  which is computationally expensive for large scale dataset
possible to distinguish the similar sample from the dislsimi s, while the KISSME introduces a non-iterative formulation
one. To solve this kind of problem by breaking the preservawnhich builds on a statistical inference perspective, aneig
tion property of the equality relationship in the classidrice effective, simple and fast. Given this, we propose the TAICH
learning algorithm, this paper introduces a virtual targ@t distance also in a statistical inference perspectivepafh it
re-define the transformed sample distance. For instanee, aapplies to other metrics as well.
cording to the target;, if we can construct a virtual target
x; whichis a dissimilar_ sample af;, project this tgrget and 54 Yang Metric Learning
samples to a new metric space, and make the distances from
the virtual target tor; andz, different, the samples can be We follow the KISSME method [24] to learn the Yang metric.

separated indirectly. To facilitate the discussion, we make the following defoniti

Inspired by the famous Chinese ancient Yin-Yang philosS- Pairs of samples from similar s€t= {(z;, z;)[y(z:) =
ophy: everything in the universe can be viewed as a produd(z;)} or dissimilar setD = {(x, z;)|y(zi) # y(z;)} are
of a constant conflict between opposites - Yin and Yang [26]utilized to train the Mahalanobis-like metdd. Here y () in-
we introduce a bi-target concept. The original target asts adicates the class label of a sample. Each sample RA=x1
the Yang target. A Yin (invisible) target is introduced,iagt 1S V= dimension feature vecto€';; = (z; — x;)(z; — ;)"
as the constructed virtual target described above. Howevep Used to denote the outer product of pairwise differences.
in the Yin-Yang philosophy, the Yin and the Yang are oppo-And X5 and X are the covariance matrices sfand D,
site to each other, and the constructed Yin target should p&hich can be estimated as; = ﬁ > (wi,a)es Cigr 8D =
the dissimilar sample of the Yang target. When the nearneeé)—| Z(%zj)eD Cij.
to the Yang target; cannot distinguish two samples and Considering two independent generation processes for ob-
x1, an alternative way is to find the farness of the two sampleserved commonalities of similar and dissimilar pairs, the p
from the Yin targetr; . Here,z; is a duality ofz; in terms  posed method defines the distance of a sample pair as the
of a certain criterion. Fig.1(b) shows that the distancenfro probability that it belongs to a dissimilar pair or a simiteair.
the Yin targetz;” to the sampler; is smaller than thatte;.  From a statistical inference point of view the optimal stati
Therefore, we consider that; is relatively more similar to tical decision on whether a pair is dissimilar or not can be
the target tham;. We argue that absolute distances betweembtained by a likelihood ratio test. Therefore, we test the h
images are not necessarily the best for person re-idetitifica pothesisH, that a pair(x;, z;) is dissimilar against; that
tasks that put more emphasis on the relative order or rankingis similar: §(z;, ;) = log(2=:%ilH0)y — 1o (flzizibo)y
positions. The essence of the ranking requirement is tdiiden ploiz;|H) fwows.00)

fy whether a sample is farther away from or closer to the targ whered is the log-likelihood ratio, and (v, z;, 0) is a PDF
than other samples [27, 28]. Thereforelative distanceis e(probablllty density function) with the parameter e high

. X . value of§ means thaH,, is validated. In contrast, a low value
more important to satisfy .these conditions. ) means thakt is rejected and the pair is considered as similar.
Based on the above idea, we propose TACHI dis-  Tg pe independent of the actual locality in the feature space
tanceto demonstrate the relative distance. Learned from [24)ye cast the problem in the space of pairwise differences with

we consider two independent learning process in a statistic ;oro mean. Assuming a Gaussian structure of the difference
perspective. The relative distance is defined by the likelth space, the equation can be re-written as

ratio of the probability of the distance between the Yang tar

get sample pair to the probability of the distance between th L exp|
Yin target sample pair. We evaluate our method on the VIPeR 55, 2} = log( VQ’;ED —
dataset [29] and CUHK Campus dataset [30], which outper- TS exp(—1/2(zr;) T Eg (vix;))

—1/2(zrx;) T (eay))

)- (D)
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By taking the log and discarding the constant terms, Eq.1 -
can be S_Im_pllfled td(‘%l‘ .’L]) = (‘r’l _‘T])T (Egl - 251)(1.1 - | Similar sample 1 S ‘®
z;). This is the expression of the absolute distance of the [ Target sample 2 N
Yang Metric, where the metridI is expressed asl = X' — O Similar sample 2 "E}(/A . AN

° [/ Py @0

Target sample 1 /i

¥ ,!. We can see that the metric is computed fr6fy of Samples Center 7- X, +x;
similar pairs and dissimilar pairs, which is depending am th Other samples ’
vector differencex; — x;. In the following, we introducea | = }X,”,‘*V\

----------- X, —X

relative distance, which not only exploits two differenttme o
rics, but also brings another form of features relationship

\

. o Fig. 2. Two pairs of samples in a 2D sample spaceThe
2.2. Constructing the Pre-train Yin target blue line denotes the distance of a sample pair (vectorrdiffe

All the samples are located in a limited space, and they hav%r}ce), which traditional metric learning method tries tdi-op

a center, which can be estimated from the mean value of tHQize. The red line denotes the distance between the sample
samples. Let stand for the sample center. is calculated v and the vector commonness, which the new metric tries to

asu = % S, x, whereN denotes the number of all the enlarge.

training samples. In the Yin-Yang philosophy, every thing

will trend toward a balance of Yin and Yang. We argue that )

the Yin target and the Yang target are opposite, and in this From the Eq.2, we can see that the learning process ac-
paper, we choose the symmetric point of the Yang target witfally obtains two metrics in constructing relative distes.
respect to the center as the Yin targetuse- L(af +z;). ~ TheYang metric is the same as the original odd.,, =
Then, fromxj Yo7 =2u = andxj — 2, we directly Y5 — X5, and theYin metric can be expressed 4 ,;, =

—1 —1 . . .
compute the Yin target as. = v — z;, wherev denotes a =5’ Y. The metrics are respectively trained frarf

constant vector related to the samples cemtéollowing this and B;;, which are depending on not only the vector differ-
rule, for each target;, its corresponding pre-train Yin target €M1C€: but also the other feature relationship introducettidy

is constructed as; = % Zszl x, — x;. For each sample Yin target.

pair (z;, z;), a new sample pai; , z;) is constructed. Then

pairs of samples form the similar s&t= {(z;", z;)|y(z:) # 3. ANALYSIS OF TAICHI DISTANCE

y(z;)} and dissimilar seD’ = {(z;,z;)|y(z;) = y(z;)}

for Yin Metric learning. Considering Yin target; = v — x;, EQ.2 changes to

2.3. TAICHI Metric Learning 6/($i, z;) = (x; — xj)TMy(mg(zi — ;) ®)
Whether a Yin pair is dissimilar or not is also obtained by = (@i + 25— v) Myin(zi + 25— v).

a likelihood ratio test as the Yang Metric Learning does. By
duplicating and expanding the progress in Yang Metric Learn
ing, we test not only the hypothedi, that a pair(z;, z;) is
dissimilar againsfi; that the pair is similar, but also the hy-
pothesisH that a paif(z; , z;) is similar againsf{/, that the
P(IMIHHU)P(I:,IAHD) _
p(zi,zi|Hi)p(w; 25 Hp)

), whered’ is the new log-likelihood

The above distance function has the following desirable
properties:

(1) Fully informed distance decision.The distance func-
tion depends not only ap; —x;, thevector differenceusual-
ly considered by conventional metric learning, but alsotren t
vector commonness:; + x;, which contains orthogonal in-
log( @200 (@ 2;,01) formation of(z;, z;) that would otherwise be neglected when
og( Lomdd .

f(@i,m5,01) f(x; x5,00) usingz; — z; alone.
ratio or relative distance, anfl(z, ,x;,0') is a PDF with (2) Distances more discriminative. Eq.3 utilizes both
the parameter sét. Assuming zero-mean Gaussian distri- the metricM,q,,, and M,;,,, Where the new metridvi, ;,,
butions, and taking the log and discarding the constantstermis designed byBi; = (z; + 2; — v)(z; + z; — v)T. This
the equation can be simplified to Eq.2. He¥gy and¥p:  has been neglected before where oNly,,,,, is used. Fig.2
are the covariance matrices 6f and D’. To increase read- demonstrates the effectiveness\df, ,,,, andM,;,, in a 2D

pair is dissimilar:0’ (x;, z;) = log(

ability, we introduce the notatiol;; = (z; — x;)(z; —  sample space. It shows that traditional mevk,q,, con-
-’E{)T- S and D' can be resrlJecnver computed B = siders to pull the similar samples near to the targets, whée
57 Z(z;,zj>esf Bij, ¥pr = D7 Z(z;,zj)epf Bij. new metricM,, ;,, simultaneously give more power to push the
vector commonness +x; away from the sample. This will
&' (@i, m5) = (w5 —25) T (Z5" — Bp1) (@i — ) ,y  Mmake the sample pairs more decentralized, at the same time,
—(z] — ;) (S5 =S (@ — ). @ decrease the confusing possibility.
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(a) VIPeR/Basic features (b) VIPeR/SCNCD (c) VIPeR/LOMO (d) CUHK/LOMO

Fig. 3. Person re-identification results.In (a) (b) (c), methods are evaluated on the VIPeR datasd€t))iasic features are
used. In (b) the SCNCD feature is exploited. In (c) the LOM@xdee is exploited. In (d) the LOMO feature is exploited oe th
CUHK Campus dataset.

4. EXPERIMENTS . e .
Table 1. Person re-identification matching rates (%) on the

. . VIPeR dataset.
Datasets To show the effectiveness of the TAICHI distance,

we conduct experiments on two different datasets with dif- Method 1 10 25 50 time
ferent features. The widely used VIPeR dataset [29] coatain LADF [23] 30 79 93 97 781s
632 person image pairs of two different camera views. Allim- PRDC [22] 19.9 494 705 84.8 904s
ages of individuals are normalized to a size 28 x 48 pixels. SCNCD [11] 20.7 606 791 904 —
Most of the example pairs contain a viewpoint change, mak-  K|SSME [24] 196 622 80.7 91.8 0.00%
ing the dataset one of the most challenging datasets clyrrent TAICHI 2054 6751 8583 95.020.00%

available for person re-identification. As the comparedimet  K|SSME+LOMO 25.95 74.53 9051 97.15 0.019s
learning approaches did, we divide 632 image pairs randomly TA|CHI +LOMO  29.11 79.75 93.35 97.94 0.019s
into two sets of 316 image pairs each, one for training and K|ISSME+SCNCD  32.52 76.67 89.97 9456 0.010s
the other for testing. The CUHK Campus dataset [30] was TAICHI +SCNCD 33.68 80.38 93.04 97.31 0.010s
captured with two camera views in a campus environment. [t
contains 971 persons, and each person has two images in each .

camera view. All images were scaled1i6) x 60 pixels. The IS Very fast, especially when the amount of data constant-

persons were split to two groups, 485 for training and 486 fofY 9r0Ws. Following the non-iterative framework KISSME,
test. from the Table 1, we can also see that the TAICHI distance is

Features In order to demonstrate the independence o]pomputatlonally much more efficient than LADF and PRDC.

the proposed method to different features. We conducted ex-
periments on the basic features described in [24], thergalie 5. CONCLUSION
color names (SCNCD [11]) feature, and the Local Maximal

Occur_rence Representation (LO_MO [100) f_eature. ~We convert the traditional absolute distance task to a more
This paper reports Cumulative Matching Characteristigyroper relative distance task, and adopt a bi-target perspe
(CMC) [31] curves of various algorithms, which represeet th tjye to reform existing metric learning methods and propose
expectation of the true match found within the first n ranksne TAICHI distance. Our method improves the original
To obtain a reasonable statistical significance, the exs1i  K|SSME method significantly, and also achieves the best re-
is repeated 20 times, and the average results are reporteddfjits compared to state-of-the-art metric learning apgies.
Fig.3(a), Fig.3(b), Fig.3(c) and Fig.3(d). From the figures
can conclude that the proposed TAICHI distance signifigantl
outperforms the KISSME method. Moreover, in Table 1, this 6. ACKNOWLEDGMENT
paper compares the performance of our approach in the range
of the first 50 ranks to state-of-the-art methods on the V|PeR’he research was Supported by National H|gh Techno|ogy
dataset. As can be seen, we obtain competitive results whefesearch and Development Program of China (2015AA016306),
the TAICHI distance is used. Natural Science Foundation of China (61231015, 61671336,
Generally speaking, training time cost is one of the mair61671332, 61562048), Natural Science Foundation of Jiang-
evaluating indicator of metric learning approaches. We casu Province (BK20160386), Natural Science Foundation of
observe a common fact that traditional methods all rely orHubei Province (2016CFB573), Technology Research Pro-
an iterative optimization scheme which is computationallygram of Ministry of Public Security (2016JSYJA12), EU FP7
expensive. In comparison, a non-iterative metric learninQUICK project (PIRSES-GA-2013-612652), and Jiangxi
method, which builds on a statistical inference perspectiv Youth Science Foundation of China (20151BAB217013).
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