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ABSTRACT

One of the most challenging issues in stereoscopic image quality as-
sessment (IQA) is how to effectively model the binocular behaviors
of the human visual system (HVS). The latter has a great impact on
the perceptual stereoscopic 3D (S3D) quality. This paper presents a
stereoscopic IQA metric based on the properties of the HVS. Instead
of measuring the quality of the left and the right views separately, the
proposed method predicts the quality of a cyclopean image to ensure
that the overall S3D quality is as close as possible to the binocular
vision. The cyclopean image is synthesized based on the local en-
tropy of each view with the aim to simulate the phenomena of the
binocular rivalry/suppression. A 2D IQA metric is employed to as-
sess the quality of both the cyclopean image and the disparity map.
Additionally, the quality of the cyclopean image is modulated ac-
cording to the visual importance of each pixel defined by the just
noticeable difference (JND). Finally, the 3D quality score is derived
by combining the quality estimates of the cyclopean image and dis-
parity map. Experimental results show that the proposed method
outperforms many other state-of-the-art SIQA methods in terms of
prediction accuracy and computational efficiency.

Index Terms— stereoscopic image quality assessment, cyclo-
pean image, binocular rivalry/suppression, just noticeable difference
(JND)

1. INTRODUCTION

In the past few years, great efforts in Stereoscopic 3D (S3D) tech-
nologies have been made to bring a realistic 3D visual experience
to consumers. However, S3D technology development brings some
challenges especially to 3D-TVs makers. One of the major chal-
lenges is linked to the user’s quality of experience (QoE) including
comfort and fatigue aspects. In order to achieve this, it’s important to
develop accurate and reliable IQA metrics for 3D stereoscopic con-
tent. While 2D IQA has greatly advanced in the recent years, stereo-
scopic IQA (SIQA) is only in its infancy. Mainly because 3D per-
ceptual quality can be affected by the characteristics of both monoc-
ular and binocular vision. Even though 3D quality can be measured
using subjective experiments [1], these are tedious and expensive.
Therefore, objective metrics are needed to automatically assess the
perceived 3D visual quality.

A stereo pair contains two slightly different views (i.e., left and
right views), each of which is projected separately onto the retina.
When a S3D image is observed, the human visual system (HVS)
merges the two views to yield a single mental view (i.e., cyclopean
image) based on the properties of the binocular vision [2]. Thereby,
the 3D perceptual quality depends not only on the quality of each
individual view [3], but also on the depth information [4] and the

binocular characteristics [5]. The idea is to explore how these at-
tributes contribute to the overall 3D quality. Therefore, to design
reliable and accurate S3D metrics, it is important to understand and
account for the different perceptual processes of the HVS.

In this paper, we propose a new SIQA metric based on the HVS
properties, combining the quality scores of the cyclopean image [5]
and the disparity map. The major contribution of this work lies in
the development of a novel 3D quality metric by modeling the phe-
nomena of binocular rivalry/suppression, and accounting for dispar-
ity map quality as well as the monocular spatial sensitivity of the
HVS. Besides, we provide a comprehensive experimental evaluation
for our proposed method, and an extensive comparison with other
SIQA methods. The remainder of the paper is organized as follows.
In Sect. 2, we provide a brief review of recent SIQA metrics. Sect.
3 describes the proposed SIQA method. We evaluate and discuss the
performance of the proposed metric in Sect. 4. This paper ends with
some conclusions and future work.

2. RELATED WORK

In this section, we briefly review the recent SIQA methods. Based on
the type and the amount of the information used from stereoscopic
views, the SIQA methods can be divided into three categories [6]:
(1) stereo-pair-based methods, (2) methods based on stereo-pair and
depth information, (3) methods considering the HVS properties.

2.1. Stereo-pair-based methods

The SIQA methods of the first category try to extend the 2D IQA
algorithms directly to measure the distortions of S3D images. Most
early approaches [7, 8] assess the quality of left and right views sep-
arately using state-of-the-art 2D quality metrics, and then combine
both scores into an overall 3D quality score. For instance, Campisi et
al. [7] evaluated the S3D quality by four 2D quality metrics includ-
ing structural similarity metric (SSIM) [9], universal image quality
index (UQI) [10], C4 [11] and reduced-reference QA [12]. How-
ever, considering the combination of the qualities for each view as
an overall 3D quality does not correlate well with the human quality
judgments [13]. This is mainly due to the fact that these 2D metrics
do not take into account depth information, which plays an important
role on 3D perception.

2.2. Methods based on stereo-pair and depth information

Consequently, the second category employs both views of a stereo
pair in addition to depth/disparity information to estimate 3D qual-
ity. In this category, 2D quality metrics are used to measure the
quality of both the stereo-pair and the disparity map. Then, these
two quality values are combined to yield a 3D quality score. In an

2037978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



early research, Benoit et al. [3] proposed a full reference 3D met-
ric that applies SSIM and C4 metrics on left and right images in-
dependently, and then combined these 2D scores with the estimate
of disparity map distortion. Later, You et al. [14] explored the per-
formance of 2D quality metrics used in the context of 3D quality
assessment with different ways of combining between the disparity
map quality and views’ quality. Hwang and Wu [15] developed a 3D
quality prediction model that integrates the stereo-pair quality with
depth quality and S3D visual saliency. Recently, Wang et al. [16]
designed a reduced reference SIQA model, considering the quality
of both luminance images and disparity map, based on image statis-
tics in the contourlet domain. Since the ground truth depth/disparity
maps are not always available, this category of methods estimate the
disparity maps by using stereo matching algorithms. Thereby the ac-
curacy of the stereo matching algorithms may affect the performance
of 3D quality prediction.

2.3. Methods considering the HVS properties

In fact, the views of a stereo-pair may suffer from an equal amount of
distortion (namely symmetric distortion) or different amounts and/or
types of distortions (namely asymmetric distortion). Symmetric dis-
tortion results in binocular fusion [17], whereas asymmetric dis-
tortions lead to either binocular rivalry [18] or binocular suppres-
sion [19] depending on the strength of the difference. These latter
have a great impact on perceived 3D quality. The SIQA methods of
the two above-mentioned categories are quite useful in the case of
symmetric distortion, but perform much less effectively for asym-
metrically distorted stereo-pairs that are very common in real appli-
cation such as coding. Thus, to improve the performance of the 3D
metric, the third category of SIQA methods consider the monocular
and/or binocular visual properties in addition to stereo-pair quality
and depth information.

It is known that the human eyes are incapable of perceiving pixel
changes below a specific visual threshold namely the just noticeable
difference (JND) due to their underlying temporal/spatial sensitiv-
ity and masking effects [20]. Some JND models for S3D content
(3D-JND) accounting for both monocular and binocular depth cues
have been proposed [21]. For instance, a binocular just noticeable
difference (BJND) model [22], which investigates the properties of
the binocular vision in response to asymmetric noise in a stereo-pair
based on HVS characteristics, has been applied in 3D quality esti-
mation [23, 24].

Other SIQA approaches combine left and right views into one
cyclopean image, and the final 3D quality is measured by analyzing
this merged image. For example, Chen et al. [5] developed a SIQA
metric by computing the quality of the cyclopean images constructed
by a linear model. The weights of this model are derived from the
Gabor filter magnitude responses, which simulate the binocular ri-
valry. Similarly, Fezza and Larabi [25] proposed a full reference
SIQA method based on the quality of the test cyclopean image gen-
erated by using local entropy and depth information. Besides, Lin
and Wu [26] predicted the 3D quality based on both binocular com-
bination and binocular frequency integration. In the following sec-
tion, we propose a SIQA method that estimates the degradations of
cyclopean image and disparity map.

3. THE PROPOSED SIQA METHOD

As mentioned above, the HVS is not sensitive to the quality in the
left or right image separately. Instead, it perceives distortions of the
cyclopean image as 2D impairments, and depth/disparity distortion

Fig. 1: Framework of the proposed SIQA method.

as 3D impairment. Thereby our proposed SIQA method is based on
the assumption that the overall 3D quality is a combination of the
qualities of binocular-based cyclopean image and the disparity map.
Figure 1 shows the framework of the proposed SIQA method. This
3D quality prediction model consists of 5 steps:

1. Disparity estimation for both reference and distorted stereo
pairs;

2. Formation of the cyclopean image for each stereo pair based
on local entropy;

3. Quality assessment of the cyclopean image and disparity map
separately using the UQI metric;

4. Weighting the cyclopean image quality with the JND map of
the reference cyclopean image;

5. S3D quality estimation by combining the quality of the JND-
based cyclopean image with the qualiy of disparity map.

The first step is to form the cyclopean images. According to a
linear model proposed in [5,27], by modeling the rivalry/suppression
when a stereo stimulus is presented, we synthesize the cyclopean
image as follows:

Ic(i, j) =Wl(i, j)× Il(i, j) +Wr(i, j − dl)× Ir(i, j − dl), (1)

where Il and Ir represent the left and right images respectively, and
Ic is the cyclopean image. Wl andWr are the weighting coefficients
for their corresponding images, and used to describe the rivalry pro-
cess, thus Wl +Wr = 1. Moreover, i and j are the pixel coordi-
nates, and dl(i, j) represents the disparity value of the pixel (i, j) of
left image that corresponds to the horizontal shift of one pixel from
the left to the right image. To determine the disparity map, we pro-
pose to use a stereo matching algorithm recently proposed by Lee
et al. [28]. This algorithm efficiently achieves high performance in
disparity estimation and deals with the issues of occlusion and depth
discontinuities.

As described in [27], the experience of binocular rivalry is cor-
related to the relative stimulus strength of each view instead of ab-
solute stimulus strength. Moreover, the studies in [5] [13] found that
the 3D human perception is dominated by the view of high contrast
or rich contours. In other words, the perceptual 3D quality follows
the quality of the view containing a higher amount of information.
Therefore, the local information content is used to determine the rel-
ative stimulus strengths Wl and Wr of two views, where Wl(i, j)
and Wr(i, j) are defined by:

Wl(i, j) =
ENl(i, j)

ENT (i, j)
,Wr(i, j − dl) =

ENr(i, j − dl)

ENT (i, j)
, (2)
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ENT (i, j) = ENl(i, j) + ENr(i, j − dl), (3)

where ENl(i, j) and ENr(i, j) are the left and right local entropy
of the pixel (i, j) in the left and right views respectively. The image
entropy is related to the amount of information that can be coded
in the compression process. For instance, a low entropy image con-
tains very little contrast. The entropy of a pixel computed based on
11-by-11 neighborhood with specific shape around this pixel [29] is
described as follows:

EN(i, j) = −
gmax∑

s=gmin

p(xs)× log2(p(xs)), (4)

where gmin and gmax are minimum and maximum values respec-
tively in the corresponding neighborhood pixels. p(xs) denotes the
probability that the difference between two adjacent pixels is equal
to s. Based on equations 2, 3 and 4, our SIQA method simulates the
binocular rivalry/suppression. For example, different local entropies
in two views lead to binocular rivalry/suppression, and the 3D qual-
ity is more affected by the view containing higher local entropies.

Given the cyclopean images (Irc, Idc) and the disparity maps
(Dpr , Dpd) of the reference and distorted stereo pairs, we indepen-
dently measure the quality of the cyclopean image and the disparity
map by using 2D IQA metric. In [14], You et al. found that UQI
performs the best for 3D quality prediction among all the tested 2D
IQA metrics. On the other hand, UQI metric has the best perfor-
mance for IQA on the disparity map. Actually, UQI used in disparity
quality estimation is based on comparing the structural information,
and the disparity can express such information of the original im-
ages. Thereby we propose to employ UQI to predict the quality of
the stereo pair and disparity map independently:

Qc(i, j) = UQI(Irc, Idc), Qd = UQI(Dpr, Dpd), (5)

where Qc is the UQI index map of the test cyclopean image, and Qd

denotes the quality score of the disparity map. In order to improve
the SIQA performance, we used the visual importance of the pixel
to weight the cyclopean quality score [23]. The visual importance,
which corresponds to monocular spatial sensitivity of HVS, is de-
scribed by JND thresholds [30] of the reference cyclopean image.
Accordingly, the JND-based cyclopean quality QJND

c is calculated
by:

QJND
c =

∑N
i,j

[
1

JND(i,j)
×Qc(i, j)

]
∑N

i,j
1

JND(i,j)

, (6)

whereN is the number of pixels in the cyclopean image. High value
of the JND in a pixel means that this pixel can tolerate a large degra-
dation, and thus has a low visual importance in the perceptual qual-
ity. Finally, the S3D quality score Q3D is calculated by a linear
model:

Q3D = α×QJND
c + β ×Qd (7)

where α and β are the weights of the 2D JND-based cyclopean qual-
ity and the disparity quality respectively, with α + β = 1. In our
implementation, we assume that the 2D quality has more importance
than disparity quality, thus we fixed α = 0.6 and β = 0.4.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed SIQA
method on the publicly available LIVE 3D IQA database (phase
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Fig. 2: Scatter plots of DMOS versus predicted scores obtained by
proposed SIQA method.

II) [34]. LIVE 3D IQA database is composed of 8 original im-
ages and 360 distorted stereo pairs with symmetric and asymmetric
distortions, including additive white gaussian noise (WN), gaussian
blur (Gblur), JPEG, JPEG 2000 compression (JP2K) and fast fad-
ing (FF). We compare the proposed method with four other SIQA
methods [5,23–25]. For the SIQA methods, we used the same stereo
matching algorithm [28] to estimate the disparity maps to ensure a
fair comparison. In addition, we evaluate the performance of SIQA
methods using only 2D metrics including SSIM, MS-SSIM [31],
FSIM [32], VIF [33] and UQI. For these 2D-based SIQA meth-
ods, we estimated the 3D perceptual quality by averaging the qual-
ity predicted from the left and right views. The performance of the
3D quality metrics has been evaluated using three well-known mea-
sures: the Linear Correlation Coefficient (LCC), the Spearman Rank
Order Correlation Coefficient (SROCC) and RMSE. Three measures
were computed between DMOS and the predicted scores after a non-
linear regression with a five-parameter logistic function described
in [35]. All tests were performed by running MATLAB code on a
portable computer (Inter Core i7-2630 QM Processor at 2.00 GHz,
4 GB RAM, Windows 7).

4.1. Overall performance

Table 1 shows the performance of SIQA methods on LIVE 3D IQA
database. These results demonstrate that the proposed method out-
performs the others methods except Chen’s method for the cases
of symmetric and asymmetric distortions. Actually, the proposed
method is quite similar to Chen’s method [5] in terms of overall per-
formance, but the proposed method is obviously much faster than
Chen’s method. To summarize, our proposed method achieves high
performance with low computational costs. On the other hand, most
of 2D-based SIQA methods are as efficient as the 3D IQA methods
for the symmetrically distorted stereo pairs, but they generally give
bad performance than 3D IQA methods for asymmetric distortions.
This is mainly due to the fact that 2D-based SIQA methods evalu-
ate the S3D quality without considering neither the depth/disparity
information nor the characteristics of the binocular vision. It should
be noted that the method using UQI metric performs best within all
2D-based SIQA methods.
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Table 1: Performance of SIQA methods on LIVE 3D IQA database (phase II). The symbols AS and S are
respectively the asymmetric and symmetric distortions. CT denotes the computational runtime (in second) for
all images. Italicized entries are 2D quality metrics, while the best performance are bolded.

Method LCC SROCC RMSE CT
S As Total S As Total S As Total Total

SSIM [9] 0.852 0.767 0.802 0.826 0.736 0.793 6.543 6.510 6.736 30
MS-SSIM [31] 0.927 0.719 0.795 0.912 0.684 0.777 4.694 7.047 6.851 49
FSIM [32] 0.929 0.731 0.808 0.912 0.684 0.786 4.623 6.913 6.654 919
VIF [33] 0.928 0.777 0.837 0.916 0.732 0.819 4.653 6.383 6.184 684
UQI [10] 0.940 0.794 0.863 0.938 0.755 0.841 4.223 6.159 5.685 38
Wang [23] 0.862 0.743 0.771 0.826 0.696 0.771 6.334 6.787 7.188 82
Fezza [24] 0.788 0.713 0.751 0.778 0.676 0.734 7.685 7.104 7.453 163
Fezza [25] 0.930 0.820 0.871 0.921 0.796 0.862 4.576 5.801 5.553 1410
Chen [5] 0.939 0.878 0.909 0.927 0.858 0.904 4.277 4.846 4.700 14089
Proposed 0.940 0.875 0.906 0.938 0.839 0.893 4.272 4.903 4.795 2392

The performance of Wang’s method [23] and Fezza’s method
[24] are lower than the proposed approach despite their use of binoc-
ular properties. This may be explained by the fact of predicting 3D
quality separately of left and right views, and failing in accounting
for the binocular properties. Thereby the methods based on cyclo-
pean image (i.e., Chen’s [5], Fezza ’s [25] and our proposed method)
achieved better performance than other 3D IQA methods. In addi-
tion to the performance comparison mentioned above, we provide in
Figure 2 the scatter distributions of DMOS versus predicted scores
obtained with the proposed method, as well as the non-linear fitting
curve.

4.2. Discussion about the proposed strategy

In this section, we show the advantages of considering both JND and
quality assessment for disparity map in our SIQA method. We com-
pare the performance and the influence of each component of the
proposed metric (see Figure 1). The performance of the four SIQA
methods on one database are shown in Table 2. SIQA method with-
out JND does not use the JND map to weight the quality of reference
cyclopean image, whereas the SIQA method without quality assess-
ment for disparity map (DQA) does not consider the quality of dis-
parity map. From the results, we can notice that the proposed SIQA
method (i.e, with JND and DQA) gives the best performance among
all strategies. However, the proposed method slightly outperforms
method without JND in terms of LCC. In addition, SIQA method
without JND performs better than SIQA method without DQA. This
can be explained by the fact that the depth information is more im-
portant than the sensitivity of HVS for 3D quality prediction. In
summary, the results of Table 2 mean that 3D quality prediction per-
formance can be improved by accounting for both JND and disparity
quality estimation. We also explored the performance of proposed
method for different types of distortions. Our method performs quite
well for both GBlur and FF distortion. We cannot show here due to
page limitation.

5. CONCLUSION

In this paper, we proposed a quality assessment method for stereo-
scopic images based on HVS properties. Our method models the hu-
man stereo vision by fusing the left and right views to generate a cy-
clopean image, and taking into account the disparity information as
well as the monocular spatial sensitivity of HVS. The experimental
results showed that the proposed method outperforms well-known

Table 2: Performance of the proposed SIQA method on
LIVE 3D IQA database (phase II).

Strategies LCC SROCC RMSE
without JND 0.902 0.883 4.870
without DQA 0.889 0.864 5.163
without JND and DQA 0.887 0.866 5.178
with JND and DQA 0.906 0.893 4.795

2D-based SIQA methods and 3D IQA methods in terms of prediction
accuracy and computational costs. In future works, the performance
of the proposed method will be evaluated on other databases. In ad-
dition, other reliable approaches modeling the process of binocular
rivalry will be considered to improve the performance of our method.
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