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ABSTRACT 

Segment-tree (ST) based cost aggregation algorithm for 

stereo matching successfully integrates the information of 

segmentation with non-local cost aggregation framework. 

The tree structure which is generated by the segmentation 

strategy directly determines the final results for this kind of 

algorithms. However, the original strategy performs unrea-

sonable due to its coarse performance and ignores to meet 

the disparity consistency assumption. To improve these 

weaknesses we propose a novel segmentation algorithm for 

constructing a more faithful ST with enhanced segmentation 

advantage according to a robust initial over-segmentation. 

Then we implement non-local cost aggregation framework 

on this new ST structure and obtain improved disparity 

maps. Performance evaluations on all 31 Middlebury stereo 

pairs show that the proposed algorithm outperforms than 

other five state-of-the-art aggregated based algorithms and 

also keeps time efficiency. 

Index Terms— Segment-tree, stereo matching, non-local 

aggregation, segmentation advantage 

1. INTRODUCTION 

According to the related works which have been reported in 

[1-4], stereo matching algorithms can be categorized into 

two groups: global and local algorithms. Both categories are 

often implemented with one or all of the following four 

steps: matching cost computation; cost aggregation; 

disparity computation; and disparity refinement. Global 

algorithms, such as Belief Propagation algorithm [5] makes 

explicit smoothness assumptions and minimize a predefined 

energy function for obtaining optimal result. Despite the 

reliable results generated, they still perform time-consumed. 

Local algorithms, such as Adaptive Support Weight (ASW) 

algorithm [6] performs matching cost computation at first 

and then implement cost aggregation within a local window. 

After that, a Winner-Takes-All (WTA) strategy is employed 

for disparity computation which selects the corresponding 

disparity value of the minimum aggregated cost for each 

pixel. At last, some disparity refinement strategies such as 

Left-Right Cross-check (LRC) and Occlusion Filling (OF) 

are widely used for obtaining final results. Unfortunately, 

they perform faster but still inferior in accuracy. 

Yang proposed a non-local cost aggregation algorithm 

[7, 8] which performed much better than traditional local 

ones. However, his work is limited by solving the matching 

problem on a Minimum Spanning Tree (MST) structure. As 

a variant, Mei et al. proposed a Segment-tree (ST) based 

algorithm [9] which introduced segmentation information 

into non-local cost aggregation framework and was reported 

to perform better than MST based algorithm. More recently, 

a Cross-Scale framework has also been proposed for 

improving some existing local and non-local aggregated 

based algorithms [10, 11]. 

For ST based algorithm, the tree structure is directly 

determined by the segmentation strategy. However, the 

original strategy performs too relaxed at the beginning of 

grouping pixels into segments and too constrained at last, 

which inevitably leads coarse performances on initial 

segmentation results. More importantly, these imperfect 

segments weakly match the disparity consistency assum-

ption where the pixels are more likely to share similar 

disparities and get higher supported weights for each other 

in one natural segment. That means the original ST based 

algorithm limitedly utilize the segmentation advantage while 

implementing non-local cost aggregation framework. 

The main contributions to our work are we propose a 

novel segmentation strategy and effectively employ it into 

ST based algorithmic framework. The most praiseworthy 

thing is the improved ST based algorithm not only achieves 

better results but also keeps time efficiency. 

This paper is organized as the following. We firstly have 

a brief review of original ST based algorithm. Then a novel 

segmentation strategy is proposed for constructing a more 

faithful ST structure. Based on this new tree structure, we 

implement the non-local cost aggregation and yield superior 

results. Performance evaluations on all 31 Middlebury 

stereo pairs with other five state-of-the-art aggregated 

algorithms are evaluated in experimental section. We draw a 

conclusion at the last section. 

2. SEGMENT-TREE BASED ALGORITHM 

Based on the main idea of [12], ST based algorithm 

performs two connected neighbored pixels with one edge 

and computes the color dissimilarity as the tree’s weight on 

the whole graph. Each edge weight connects a pair of 

neighbored pixels s and r can be computed as: 

)()(),( rIsIrsωωe                             (1) 

For a color image I, the edge weight ),( rsω is the maximum 

value estimated from three RGB channels. 

In ST based algorithm, the final aggregated cost )( pC A

d
is: 






Iq

d
A
d qCqpSpC )(),()(                         (2) 

Where Cd(q) denotes the matching cost volume of disparity  
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value d with the color-gradient based method [13, 14] and 
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denotes the supported weight from p to any pixel Iq  on a 

unique path P(p,q) of the tree; D(p,q) denotes the weights 

summation of (1) on P(p,q), σ is a parameter of user-

specified. It is clear that the best supported weight S(p,q) is 

related to the minimum of D(p,q), which determines the 

aggregated results of (2). At the same time, from (3) we can 

infer that the pixels lie far from or dissimilar to p would not 

receive relative larger supported weights. 

The procedures of constructing the ST structure can be 

illustrated as in Fig.1. For the sake of simplicity, we only 

use four nodes to exhibit. In initialization step (Fig.1 (a)), 

all the pixels are treated as subtrees on the graph; and for all 

pairs of subtrees’ connected weights which satisfied as: 
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Two subtrees would be connected as a new larger subtree in 

grouping step (Fig.1 (b)). Where Int(Tp) and |Tp| denote the 

maximum edge weight and the region size of subtree Tp 

respectively; k is a user specified parameter. It is easily to 

infer that the ST structure is directly determined by (4). 
After grouping step, a linking step is enforced to integrate 

each subtree into a whole ST structure (Fig.1 (c)). Then the 

tree-based non-local cost aggregation can be implemented 

on it. The same as in [7-11, 15], the intermediate two-pass 

cost aggregation on a tree structure can be represented as: 
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Where Pr(p) denotes the parent of pixel p. After that, WTA 

strategy is enforced as disparity computation for obtaining 

the initial results. This is called ST-1 algorithm. 

V1 V2

V3 V4

V1 V2

V3 V4

T1

T2

V1 V2

V4 V5

ST

 
(a)                          (b)                             (c) 

Fig.1 The procedures of constructing a ST structure. (a) Initialization. (b) 

Grouping. (c) Linking. Here we assume that in grouping V1 and V2, V3 and 
V4 are connected to construct two subtrees; in linking V1 and V4 are 

connected (the connected line segment is marked with red color in (c)). 

Further an enhanced strategy of color-depth weight is 

employed after ST-1 algorithm. The main idea behind this is 

to introduce depth information into weight function and 

rebuild the ST structure. The jointed color-depth weight can 

be represented as: 
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Where I and D are the normalized parameters for color 

image I and depth image D, λ used for balancing the relative 

contributions of color and depth. D is computed by the ST-1 

algorithm. With the color-depth weight, an enhanced ST is 

constructed and the non-local cost aggregation is also 

implemented. According to the second enforcement of WTA 

strategy, ST-2 algorithm is performed. At last, with the 

disparity refinement, final results are yielded. 

3. PROPOSED ALGORITHM 

As mentioned above we can infer that the ST structure 

directly determines the final result of non-local cost 

aggregation. That means the segmentation algorithm plays 

an important role for constructing the ST structure and 

provides segmentation advantage while implementing non-

local cost aggregation. However, in formula (4) the original 

segmentation algorithm generally performs underwhelming 

due to the following drawbacks: Firstly, k does not control 

the desired region size very well. A large k leads to a much 

relaxed threshold at the beginning of grouping and performs 

under-segmentation regions with inconsistent boundaries. 

On the contrary, a small k performs better at the beginning 

of grouping but inevitably leads to consistent over-

segmentation and too many boundaries. In this circumstance, 

small segments with too few pixels would not reach relative 

effective supported weights from neighbors. That means too 

many small segments could lead the non-local aggregation 

trap into “localization”. Secondly, as the region size |T| 

grows, the term k/|T| decreases dramatically which becomes 

increasingly unreliable for discriminating between regions 

of the same type. At the same time, when |T| increases, the 

connecting decision function would perform much too 

constrained. It will break the homogeneous regions into 

different segments and contrary to the disparity consistency 

assumption. More importantly, while implementing non-

local cost aggregation on this imperfect ST structure would 

lead the substandard utilization of segmentation advantage. 

Based on the reasons we have mentioned above, an 

algorithm is proposed for constructing a new ST structure. 

In our implementation, the connected decision function can 

be formulated as follows: 

))(,)(min( qqppe TkTIntTkTIntω
j

         (7) 

Here we choose k as 0.02. We perform the algorithm mainly 

on the following two considerations: For one thing, the 

proposed algorithm begins with a more constrained 

threshold while grouping. Compared with original larger k 

(k=1200 in original segmentation algorithm), this choice of 

k keeps most of the boundaries are coincident with true 

region borders. For another thing, with the increasing of the 

region size |T|, the proposed segmentation algorithm 

performs a more relaxed threshold. It could enforce more 

similar regions merged and perform more compatible with 

disparity consistency assumption. Due to these reasons, the 

proposed algorithm could provide enhanced segmentation 

advantage. Moreover, in order to prevent the fast increasing 

of region size |T|, we also perform a square root of it. In 

general, the proposed algorithm provides a constrained 

threshold at the beginning and a relaxed threshold while 
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merging regions. What’s more, it also better meets the 

disparity consistency assumption. 

With formula (7), an Improved-ST (IST) based non-

local cost aggregation algorithm for stereo matching can be 

implemented, which is descripted as follows: 

Alogrithm1  Improved-ST Algorithm 

1:  for each p I 

2:    for d [0,maxdis] 

3:       Compute matching cost 

4:    end for 

5:  end for 

6:  Compute D by ST based algorithm with formula (7) 

7:  Construct updated ST with Color-Depth weight: 
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8:    Aggregate costs and get D1 as updated result 

4. EXPERIMENTAL RESULTS 

In this section, we have two parts to show the experimental 

results. To ensure fairness, there is no disparity refinement 

step introduced in 4.1; and we also set the same error 

threshold for each disparity map (1.0 pixel). For all the 

algorithms we have tested the error rates in non-occluded 

regions. But for final results with disparity refinement in 4.2, 

we also have evaluated the error rates of all pixels. For 

testing the time efficiency in fair, all the algorithms are 

implemented on a same PC platform with a 3.60GHz Intel 

Core i7 CPU, 16GB RAM and 64-bits OS; furthermore, all 

the implementations are estimated by using the C++ code. 

         
(a) Segmentation result        (b) ST-1 (10.43%)            (c) ST-2 (10.39%) 

         
(d) Segmentation result        (e) IST-1 (9.39%)             (f) IST-2 (8.97%) 

Fig.2. Comparisons of different ST based stereo matching algorithms. (a) 

Result of original segmentation algorithm on color image. (b), (c) Results 
of ST-1 and ST-2. (d) Result of proposed segmentation algorithm on color 

image. (e), (f) Results of IST-1 and IST-2. All the bad pixels are marked 

with red dots and the error rates in non-occluded regions are indicated 
below. Error threshold is 1.0 pixel. 

At first, Fig.2 visualizes the segmentation results of 

color images and disparity maps of Art with different 

algorithms. We name IST-1, IST-2 as the improved ST-1 

and ST-2 algorithms. To ensure fairness, here for all the 

impleme-ntations we employ the same textureless handling 

matching cost computation method which has been 

proposed in [15]. In addition, there is no disparity 

refinement step introduced. Compared with the original 

color segmentation result (Fig.2 (a)), ours (Fig.2 (d)) 

provides more segments and preserves more important 

boundaries. Due to this segmentation advantage, the 

proposed algorithm constructs a more faithful ST structure 

and perform lower error rates in non-occluded regions (as 

shown in Fig.2 (e) and Fig.2 (f)). 

4.1. Evaluations without Disparity Refinement 

In this part, our proposed IST-2 and other five state-of-the-

arts aggregated based algorithms are estimated: MST [7], 

ST-2 [9], CS-GF (Guided Filter), CS-MST and CS-ST; 

where “CS” denotes the Cross-Scale algorithm [10, 11]. 

For IST-2 we set },,{ λkσ = {0.08, 0.02, 0.5} on Tsukuba, 

Venus, Teddy and Cones; and other 27 Middlebury stereo 

pairs },,{ λkσ = {0.04, 0.02, 0.5}. Here we use the matching 

cost computation method which was proposed by us in [15]: 

)))',(exp(1log()',(' ppCppC                       (8) 
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And we set the parameters as: }{},,{ 27,0.11,ττα gradcol  in 

IST-2. For other five estimated algorithms, we remain 

holding the original parameters in their implementations. 

Table 1 Performance evaluations without disparity refinement on all 31 

Middlebury stereo pairs by six algorithms. Error threshold is 1.0 pixel and 
unit of time is second. Only non-occluded regions are evaluated. 

Stereo Pairs CS-GF MST ST-2 CS-MST CS-ST IST-2 

Tsukuba 2.356 2.125 1.652 1.723 1.904 1.451 

Venus 1.264 0.913 0.522 2.135 2.636 0.371 

Teddy 6.874 7.616 7.485 5.251 5.532 6.833 

Cones 3.192 4.104 3.503 4.295 4.556 3.051 

Aloe 5.616 4.162 4.513 4.794 4.905 3.551 

Art 9.202 9.793 10.996 10.845 10.464 8.971 

Baby1 3.982 7.465 4.794 8.176 4.433 3.301 

Baby2 3.461 12.033 16.326 13.534 15.155 6.912 

Baby3 5.683 5.694 5.272 7.156 6.275 2.691 

Books 8.322 9.573 9.574 10.026 9.845 7.261 

Bowling1 13.032 17.134 16.483 20.845 22.116 8.941 

Bowling2 6.622 9.323 10.294 10.415 10.916 5.331 

Cloth1 1.316 0.513 0.412 0.724 0.775 0.171 

Cloth2 3.523 2.852 3.554 4.196 4.065 1.841 

Cloth3 2.264 1.793 1.692 2.636 2.605 0.891 

Cloth4 1.755 1.293 1.132 1.876 1.694 0.711 

Dolls 4.952 4.983 5.925 5.936 5.654 4.251 

Flowerpots 12.222 16.695 16.024 18.816 15.773 4.811 

Lampshade1 8.881 10.433 10.795 11.796 10.634 9.812 

Lampshade2 16.533 23.906 21.175 16.974 15.352 8.211 

Laundry 13.124 13.695 13.043 12.852 14.696 12.671 

Midd1 36.925 32.394 32.976 26.983 26.472 24.121 

Midd2 30.063 34.806 32.445 31.794 23.211 25.202 

Moebius 9.566 7.671 8.363 8.745 8.674 7.692 

Monopoly 25.116 24.184 24.575 23.323 22.962 12.701 

Plastic 29.551 42.535 35.793 46.526 42.324 34.302 

Reindeer  7.233 9.565 7.012 9.746 8.334 6.161 

Rocks1 2.434 2.353 2.122 2.826 2.615 1.701 

Rocks2 1.594 1.593 1.542 2.156 2.075 1.091 

Wood1 4.302 8.705 5.173 10.596 5.694 3.191 

Wood2 2.924 0.992 2.753 4.885 6.106 0.971 

Avg. Error 9.152 10.674 10.253 11.056 10.275 7.071 

Avg. Rank 3.352 3.744 3.553 4.876 4.265 1.231 

Avg. Time(s) 7.676 0.561 0.872 1.695 1.644 1.333 
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Table 1 shows the detailed results on all 31 Middlebury 

stereo pairs. The normal numbers are the percentages of the 

error pixels in non-occluded regions and the subscript 

numbers are the relative rank in each row. Among the 31 

Middlebury stereo pairs, IST-2 ranks 1 of 25/31 stereo pairs 

(marked with bold fonts in corresponding row). The average 

rank and average error rate are computed in the reciprocal 

second and third rows. We can easily conclude that IST-2 

performs best overall accuracy and the best overall rank 

among six algorithms. For time efficiency shows in the last 

row, IST-2 ranks three among six algorithms. 

Corresponding to Table 1, Fig.3 visualizes some of our 

initial results compared with other five algorithms. For all 

the disparity maps are indicated with error rates in non-

occluded regions below and the error pixels are also marked 

with red color dots. Error threshold is still set as 1.0 pixel. It 

shows definitely that IST-2 performs much better than other 

five evaluated algorithms in matching accuracy. 

4.2. Evaluations with Disparity Refinement 

To obtain final results, a disparity refinement step is also 

needed in stereo matching algorithm. For all the estimated 

algorithms, we have implemented with the same disparity 

refinement strategy. Different from the former contents in 

4.1, here we also have measured the error rates of all pixels 

(error threshold is also set as 1.0 pixel). Table 2 simply 

shows the average error rates and running time of all the six 

algorithms. It reflects that with disparity refinement all the 

results have reached improvement than themselves without 

disparity refinement in non-occluded regions. Even in this 

circumstance, our proposed algorithm remains keeping the 

top 1 rank among six algorithms both in non-occluded 

regions and all pixels. Although the running time increases, 

our algorithm still performs shorter time than CS-MST, CS-

ST and CS-GF algorithms. Especially for CS-GF, it 

performs the longest implementing time. 

Table 2 Performance evaluations with disparity refinement on 31 

Middlebury stereo pairs by six algorithms. Error threshold is 1.0 pixel and 
unit of time is second. 

Algorithms CS-GF MST ST-2 CS-MST CS-ST IST-2 

Avg. Error(non-occ) 8.46 9.83 9.42 9.93 8.40 6.52 
Avg. Error(all) 15.77 16.98 18.32 17.71 16.31 13.78 
Avg. Time(s) 9.10 0.75 1.12 3.38 3.27 1.45 

 

                         
CS-GF (5.68%)                 MST (5.69%)                    ST-2 (5.27%)                  CS-MST (7.15%)                CS-ST (6.27%)                  IST-2 (2.69%) 

                         
CS-GF (3.19%)                 MST (4.10%)                    ST-2 (3.50%)                  CS-MST (4.29%)               CS-ST (4.55%)                  IST-2 (3.05%) 

                         
CS-GF (4.95%)                 MST (4.98%)                    ST-2 (5.92%)                   CS-MST (5.93%)               CS-ST (5.65%)                  IST-2 (4.25%) 

Fig.3. Disparity maps of Baby3, Cones and Dolls without disparity refinement ordered from top to bottom rows. The error rates in non-occluded regions are 

indicated below and the bold fonts represent the lowest. The error pixels are marked with red color dots and the error threshold is 1.0 pixel.

5. CONCLUSION 

In this paper, we improved the ST based stereo algorithm by 

using a novel segmentation algorithm. Firstly, it provides an 

enhanced segmentation advantage and constructs a more 

faithful ST structure. Secondly, it also better meets the 

disparity consistency assumption. Based on this new tree 

structure, an Improved Segment-tree (IST) non-local cost 

aggregation algorithm can be performed. Performance 

evaluations show that the proposed algorithm outperforms 

than other five aggregated based algorithms on all 31 

Middlebury stereo pairs and time consuming does not 

increase too much. 

      In the future, we plan to employ various improved or 

other segmentation algorithms into the ST based stereo 

algorithmic framework for obtaining superior results. 
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