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ABSTRACT

We propose a method for disparity estimation in stereo

video. We address the problems associated with spatially-

temporally-correlated disparity variations (STCDV). STCDV

problems are caused by complex motions, e.g., yaw-rotation,

pan-tilt-zoom camera movements, etc. The key novelty of

this study is to introduce a spatio-temporal disparity hyper-

plane (STDH) model. The proposed STDH model represents

a hyperplane defined in four-dimensional space spanned by

disparity, image plane, and time coordinates. Our STDH

model is represented by surface normals varying with the

spatially-temporally-correlated changes in disparity. Thus,

our STDH model is effective in estimating disparity in a

stereo video including STCDVs. We estimate video disparity

by incorporating our STDH model into the PatchMatch brief

propagation framework. Our experiments demonstrate that

the proposed method outperforms other methods.

Index Terms— disparity estimation, stereo video, spatio-

temporal hyperplane model

1. INTRODUCTION

Methods for stereo matching have been well studied [1, 2].

They were used to search on the correspondences based on

similarities that are measured using a local support window.

Methods using the slanted support window have shown their

effectiveness in estimating the disparity [3–8]. Because the

slanted support window allows to capture the spatial changes

in the disparity in a local window, it enables disparity estima-

tion to be performed with sub-pixel accuracy.

In recent years, techniques of disparity estimation using

a stereo video have attracted considerable attention among

researchers. However, there exist crucial problems to per-

form an accurate disparity estimation in a stereo video. Since

the stereo video observes the movement of objects in a scene

while the camera undergoes movement itself, the correspond-

ing disparity varies temporally. Thus, techniques for compen-

sating for the temporal disparity variation are required.

Researchers have proposed methods for estimating the

video disparity [3, 9–19]. Methods [3, 9, 10] have achieved

the performance enhancement of a video disparity estimation

in a frame-by-frame manner by incorporating a temporal co-

Fig. 1. Spatially-temporally-correlated disparity variations

(STCDV) problem. This stereo video simulates movements

where the moving cameras turn right. This camera move-

ment causes STCDVs. In this case, the local window (the red

rectangular in the target image) is required to be deformed

spatially temporally, to estimate video disparity accurately.

herency between consecutive frames. However, these meth-

ods used motion vectors to obtain the temporal coherency;

thus, an accurate optical flow estimation is essentially re-

quired for video disparity estimation.

In contrast, the authors of [12–14, 16, 17, 19] have pro-

posed spatio-temporal window matching to estimate the video

disparity. Compared to methods employing a frame-by-frame

manner, their approach does not need optical flow compu-

tation to estimate video disparity. Furthermore, noise toler-

ance in disparity estimation can be improved, as reported in

[15]. Methods [12–14] have utilized an undeformable spatio-

temporal window (i.e., the shape of local window is a cuboid

in the spatio-temporal space) for searching on the correspon-

dences between the left and right videos. However, these

methods are hard to capture the temporal changes in dispar-

ity because the window used is difficult to be deformed spa-

tially temporally. On the other hand, methods [16–19] have

introduced spatio-temporal similarity measures to address the

temporal disparity variations.

In general, however, complex movements, such as yaw

rotations, simultaneous pan-tilt-zoom movements of cam-

eras, etc., are likely to be observed in stereo videos. Figure

1 shows an example of stereo videos simulating movements

that the moving stereo camera turns right. Such scenes will

be observed in a real world (e.g., robots or drones move

2017978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



around to search on objects or to reconstruct 3D scene).

This camera movement contains the forward movements and

the yaw-rotations. We consider that such movements cause

spatially-temporally-correlated disparity variations (STCDV)

in a stereo video. When STCDVs are observed, the local win-

dow requires to be deformed spatially temporally as shown

in the red rectangular in the target image in Figure 1. In

such scenes, previous methods [3, 9–19] would be unable to

process effectively, because they have implicitly assumed that

STCDVs would not be observed (e.g., see Eq. (2) in [17]).

To address STCDV problems that previous methods are

hard to deal with, we propose a spatio-temporal disparity hy-

perplane (STDH) model for accurately estimating the video

disparity. The STDH model is a hyperplane defined in a

four-dimensional space that is spanned by disparity, image

plane, and time coordinates. Specifically, our STDH model is

characterized with surface normals varying with the spatially-

temporally-correlated changes in disparity. Thus, it enables

to deform the shape of the local window spatially temporally.

With our STDH model, we perform disparity estimation by

utilizing a PatchMatch berief propagation (PMBP) [8] ex-

tended with a spatio-temporal pairwise term.

2. PROPOSED STDH MODEL

The proposed STDH model is defined in the four-dimensional

space spanned by disparity, an image plane, and time coordi-

nates (we refer to this as the spatio-temporal disparity space).

We derive our STDH model by first extending the original

slanted window model [3] to a spatio-temporal window.

Let the position of the p-th point in this space be xp =
(xp, yp, tp, dp) where xp and yp are the pixel position on the

image plane, tp is the time, and dp denotes the corresponding

disparity. We define the four-dimensional hyperplane hp at xp

in the spatio-temporal disparity space with the surface normal

mp = (mx
p ,m

y
p,m

t
p,m

d
p). Assuming that the q-th point xq =

(xq, yq, tq, dq) is on the hyperplane hp, the disparity value dq
can be expressed as

dq =
mx

p

md
p

(xp−xq) +
my

p

md
p

(yp−yq) +
mt

p

md
p

(tp−tq) + dp . (1)

When STCDVs are observed, we can consider that the

spatial components of mp (mx
p , my

p, and md
p) would also vary

temporally. Assuming that the temporal changes in them are

small in the consecutive frames, the temporal changes in md
p

would be negligible, while those in mx
p and my

p are approx-

imated to a linear model. With these assumptions, we apply

a Taylor series expansion to mx
p and my

p. We then obtain the

approximated linear models as,

mx
p = m̃x

p + m̃xt
p (tp − tq) ,m

y
p = m̃y

p + m̃yt
p (tp − tq) , (2)

where m̃x
p and m̃y

p are the components of the normal vector

representing the spatial variations, respectively. Further, the

(a) a model in Eq.

(1)

(b) STDH model in the x-d space

Fig. 2. Proposed STDH model. (a): An extension of [3]

(Eq. (1)). This allows us to capture the temporal variation

in disparity. (b): Our STDH model in the x-d space. Based

on the assumption that the temporal changes in the disparity

between the consecutive frames would be small, mx
p can be

represented as a linear model (mx
p = m̃x

p + m̃xt
p (tp − tq)),

while md
p is approximately the same between the consecutive

frames. Our STDH model can capture STCDVs in a stereo

video.

second terms on the right-hand side in Eq. (2) represent the

temporally-varying component of mx
p and my

p. According to

theorem of Taylor series expansion, they are derived as the

temporal derivatives at tp, m̃xt
p = (dmx

p/dt)|t=tp and m̃yt
p =

(dmy
p/dt)|t=tp , respectively.

We finally obtain our STDH model by plugging Eq. (2) in

Eq. (1). Consequently, dq is given by

dq =
m̃x

p

md
p

(xp − xq) +
m̃y

p

md
p

(yp − yq) +
mt

p

md
p

(tp − tq)

+

(
m̃xt

p

md
p

(xp − xq) +
m̃yt

p

md
p

(yp − yq)

)
(tp − tq) + dp . (3)

In Eq. (3), the first and second terms correspond to the slanted

window model [3], and the third term represents the temporal

disparity variations. The fourth term (spatio-temporal cross-

term) enables to capture the STCDVs. Figure 2 shows the

above derivation for our STDH model.

3. DISPARITY ESTIMATION

We estimate the disparity sequence h parameterized by our

STDH model. We define this as h = (h(1), ...,h(T )), where

h(t) = (h
(t)
1 , ...,h

(t)
N ) (N denotes the number of pixels in

a frame, and T is the number of frames). Each component

h
(t)
u can be represented with our STDH model as h

(t)
u =

(du, m̃
x
u, m̃

y
u,m

t
u,m

d
u, m̃

xt
u , m̃yt

u ). We minimize the follow-

ing energy function to estimate the latent disparity sequence,

E(h) =
∑
u∈V

φu(hu)+β
∑
u∈V

⎛
⎝ ∑

v∈Nst(u)

ψuv(hu,hv)

⎞
⎠ , (4)

where V represents a set of all the pixels in the dispar-

ity sequence to be estimated, and Nst(u) represents the
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spatio-temporal neighboring pixels of u. In proposed method,

we consider fourteen adjacent pixels in the spatio-temporal

space. The weight β is employed to balance the influences of

the unary and pairwise terms.

The unary term φu(hu) is defined as

φu(hu) =
∑

k∈W (u)

w(u, k)ρ(k, k′) , (5)

where W (u) is a spatio-temporal window centered at the u-

th pixel, and k is the pixel index in W (u). Similar to [20],

we utilize a spatio-temporal adaptive support weight w(u, k)
that is defined as w(u, k) = exp(−||Iu − Ik||1/γ), where

Ik is an RGB pixel value at the k-th pixel in W (u), and γ
is a parameter. Furthermore, ρ(k, k′) is a cost function that

is defined using the following two costs with a balancing pa-

rameter α as ρ(k, k′) = (1 − α)min(||Ik − Ik′ ||1, τcol) +
αmin(||∇Gk −∇Gk′ ||1, τgrad) , where k′ is the pixel index

in the target image corresponding to k in the reference image.

It is determined by warping with the disparity dk given by

Eq. (3). In computing ρ(k, k′), ∇ is an operator for comput-

ing the spatial gradient along the horizontal direction, and Gk

denotes an intensity value at the k-th pixel. In addition, τcol
and τgrad denote truncation parameters.

The spatio-temporal pairwise term ψuv(hu,hv) calcu-

lates the deviation between two STDHs at the u- and the v-th

node. Because m̃xt
p and m̃yt

p are the temporal derivatives of

mx
p and my

p, the deviation of them is measured separately

from that of m̃x
p , m̃y

p, mt
p and md

p. Thus, we compute the

deviation of STDHs with truncation parameters τc and τtd as

ψuv(hu,hv) = [min(devc, τc) + min(devtd, τtd)] , (6)

with

devc = |msp
u · (xsp

u − xsp
v )|+ |msp

v · (xsp
v − xsp

u )| , (7)

devtd = |{mtd
u · (xtd

u − xtd
v )

}
(tu − tv)|

+ |{mtd
v · (xtd

v − xtd
u )

}
(tv − tu)| , (8)

where we define msp
u = (m̃x

u, m̃
y
u,m

t
u,m

d
u) , mtd

u =
(m̃xt

u , m̃yt
u ), xsp

u = (xu, yu, tu, du), and xtd
u = (xu, yu).

We minimize Eq. (4) by utilizing a PMBP [8]. We then

estimate h∗.

Lastly, we perform post-processing to improve the esti-

mated disparity sequence. To find outliers in the estimated

disparity sequence, we first perform a left-right consistency

checking as was done in [3, 8]. For the detected outlier re-

gions, we interpolate the corresponding disparity values by

using those that are consistently matched at the neighbor-

ing pixels. This interpolation is performed according to our

STDH model (Eq. (3)).

Because of high computational cost in PMBP optimiza-

tion, we consider a temporal subset in a stereo video as the

target to be optimized. We compute the disparity for the en-

tire stereo video by sliding the target subset frame by frame.

4. EXPERIMENTAL RESULTS

We present the experimental results for the video disparity

estimation. We evaluated the performance of the proposed

method quantitatively by analyzing the average bad pixel rate

(0.5 sub-pixel accuracy) of the disparity estimation results

for non-occluded regions. We empirically set the param-

eters as as follows. The number of iterations for PMBP

optimization was set to 3, and the number of particles used

for PMBP was set to 1. For the other parameters, we set

{γ, α, τcol, τgrad, β, τc, τtd} = {10, 0.6, 10, 8, 0.57, 1.0, 1.0}.

We evaluated the proposed method by comparing differences

in the disparity models and the energy functions. Specifi-

cally, methods used in this comparison experiments are: (1)

STDH + Eq. (4) (proposed method), (2) slanted window [3]

+ Eq. (4) (Baseline (1)), and (3) slanted window [3] + Eq. (1)

in [8] (Baseline (2)). The proposed method enables to deform

the shape of local window spatially temporally, while Base-

line (1) (spatio-temporal matching) and (2) (frame-by-frame

matching) are able to do spatially only. For each method,

PMBP optimizer was used to estimate the latent disparity

sequence.

4.1. Results for STCDV Sequences

In this experiment, we analyzed the accuracy of video dispar-

ity estimation in a stereo video where STCDVs are observed.

We originally synthesized a stereo video (we named it “turn-

Right”). In this sequence, the moving stereo cameras turned

right in an indoor scene. The size of spatio-temporal window

W (u) was set to 31 × 31 × 3 for the proposed method and

Baseline (1) (“3” means the number of frames), while 31 ×
31 × 1 was used for Baseline (2) (single frame).

Figure 3 shows comparison results using the sequence

“turnRight”. Further, the average bad pixel rate for each

method was obtained as 5.03 (proposed method), 15.42

(Baseline (1)), and 5.74 (Baseline (2)), respectively. We ob-

served that proposed method was able to estimate the video

disparity more accurately.

4.2. Noise Tolerance

We also evaluated the ability of the proposed method to tol-

erate noise using the “turnRight”, and the other sequences

(“tunnel” and “temple”) provided by [13]. For each image

sequence, we added zero-mean Gaussian noise with a noise

level σ = 0, 3, 5, 7. The size of spatio-temporal window

W (u) was set to 21 × 21 × 3 for the proposed method and

Baseline (1). For Baseline (2), we set the size of spatial win-

dow to 21 × 21 × 1.

Table 1 lists the average bad-pixel rates. We can see that

the results obtained using the proposed method showed the

noise robustness against the other comparison methods.
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Table 1. Average bad pixel rate for image sequences (σ = 0, 3, 5, 7). The best scores are represented in bold.

Seq. id turnRight tunnel [13] temple [13]

σ = 0 σ = 3 σ = 5 σ = 7 σ = 0 σ = 3 σ = 5 σ = 7 σ = 0 σ = 3 σ = 5 σ = 7
Proposed 5.03 7.10 10.47 16.28 1.29 2.49 5.16 9.03 14.00 17.77 22.62 34.56

Baseline (1) 15.42 18.97 22.55 27.93 4.88 6.83 10.37 17.07 13.29 17.49 24.08 32.85
Baseline (2) 5.74 7.30 11.16 18.05 0.55 2.94 5.93 10.24 14.00 20.94 28.88 37.61

(a) Input sequence (frame no: 17,18,19)

(b) Estimated disparity sequence using proposed method

(c) Estimated disparity sequence using Baseline(1)

(d) Bad pixel sequence obtained using proposed method

(e) Bad pixel sequence obtained using Baseline(1)

Fig. 3. Disparity estimation results using sequence “turn-

Right”. In Figs. 3-(d) and (e), the gray and the white pixels

were classified as the wrong and the correct estimates with

0.5 sub-pixel accuracy, respectively. The black pixels repre-

sent occluded regions.

4.3. Results of 3D Scene Reconstruction for Real Scene

We tested proposed method using a real scene provided by

KITTI dataset [21]. In this experiment, we compared 3D

scene reconstruction results. They were obtained via trian-

gulation using the disparity sequences that are estimated with

(a) Input sequence (frame no: 890, 891, 892)

(b) Estimated disparity at the frame 891

(left: proposed, right: Baseline(1))

(c) Close-up regions (yellow rectangular in (a) and (b))

of the reconstructed 3D scene

(left: proposed, right: Baseline(1))

Fig. 4. A comparison in 3D scene reconstruction in a se-

quence provided by KITTI dataset [21]. They were obtained

using disparity estimated by proposed method (left image)

and Baseline (1) method (right image).

proposed method and Baseline (1). Figure 4 shows 3D scene

reconstruction results. We can qualitatively see that proposed

method enabled to reconstruct 3D scene more accurately.

5. CONCLUSION

We proposed a disparity estimation method for stereo video.

We tackled a problem of spatially-temporally-correlated

disparity variation (STCDV) that are caused by spatially-

temporally-correlated motions. To address STCDV prob-

lems, we proposed a spatio-temporal disparity hyperplane

(STDH) model. The STDH model is a hyperplane with the

surface normals varying with the changes in the spatially-

temporally-correlated disparity. We incorporated our STDH

model into a framework of disparity estimation based on a

PMBP. Through the experiments, we demonstrated the effec-

tiveness of the proposed method by comparing its estimation

accuracy with that of the other methods.
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