
3D RECONSTRUCTION FROM WEB HARVESTED IMAGES
USING A FORENSIC QUALITY METRIC

Mattia Lecci, Simone Milani

Department of Information Engineering - University of Padova

ABSTRACT

Structure-from-Motion (SfM) algorithms have recently been em-
ployed to reconstruct 3D scenes or environments from large sets of
unordered images which were harvested from the web. Unfortu-
nately, the accuracy of the reconstruction is significantly affected by
the quality and the amount of editing operated on the processed im-
ages. Indeed, 3D modelling can significantly benefit from including
forensic analysis strategies that are able to reconstruct the processing
history of the processed images and select the most reliable pieces
of visual information.

The current paper presents an SfM strategy that orders the dif-
ferent views/images of the scene in the reconstruction process ac-
cording to a processing age metric, i.e., a metric parameterizing the
amount of processing stages operated on each image. Experimental
results show that the proposed solution can improve the estimation
accuracy of both 3D points and camera parameters with respect to
state-of-the-art solutions.

Index Terms— Structure-from-Motion, processing age, quality
metric, 3D reconstruction, multimedia forensics

1. INTRODUCTION

Every day billions of images are posted online by diverse users on
heterogeneous data sharing platforms. This fact has recently sug-
gested the development of big data image processing strategies that
elaborate this huge amount of visual information to infer an en-
hanced understanding of the scene [3], build more effective storage
systems [4], verify facts and much more. Some of the proposed solu-
tions [5, 6] aim at reconstructing a 3D model of real scene from web-
harvested images using generalized Structure-from-Motion (SfM)
algorithms.

All these solutions are based on finding couples of conjugate
points between couples of different images by matching the local
feature descriptors. This coupling permits estimating the acquisi-
tion location and orientation for each camera [7] and, at the same
time, computing the threedimensional coordinates of the points in
the scene [8, 9]. Note that the processed pictures were taken at the
same place (the scenario to be reconstructed) by different users with
different light conditions, capture configurations, daytimes, occlu-
sions, etc. All these elements make the finding of conjugate points
more difficult, and therefore, robust local descriptors like SIFT [10]
or SURF[11] are to be adopted.

In the 3D reconstruction, the processing order of the collected
images, i.e., how to progressively-include them in the algorithm,
plays a significant role. This order is called track [5], and experimen-
tal results have shown that the final accuracy improves by including
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first couples of pictures with a lot of conjugate points. This permits
building more robust 3D models at the beginning of the reconstruc-
tion process. This ordering was very close to the acquisition order
for traditional SfM strategies, which were designed for sequentially-
captured image taken by a single moving camera [12, 13]. When
processing unordered collections of images harvested from the web
or from social platforms, this assumption is not valid any more.
Moreover, image quality is important as well since degraded images
present very few keypoints and noisy local descriptors (which could
lead to wrong matches). Downloaded images could have been edited
and re-compressed several times before their publication, and this al-
ters keypoint locations and feature values of the associated descrip-
tors [14]. Fig. 1 displays different version of image 3 from dataset
fountain which have been compressed Nc times with different
random QF values in the range [65, 98]. Graphs also display the key-
points found on each image. It is possible to notice that as the num-
ber of compression increases, the number of keypoints decreases and
their locations and orientation could be significantly altered.

Most of the so-far-proposed approaches order images consider-
ing the number and the characteristics of matching conjugate points
between couples of pictures [5, 15, 16]. At first , matching outliers
are removed, a relational graph [17] between images is built where
edge labels are computed from the number of matched points, and
then the order is found by graph processing algorithms. Together
with the number of matched keypoints, the approach presented in
this paper takes into account the quality of the images in terms of
number of editing steps. For every image in the dataset, the pro-
posed solution estimates the ”processing age”, i.e., the number of
the editing steps, using a no-reference forensic quality metrics based
on the statistics of DCT coefficients [18]. Then, following the met-
ric fusion strategy presented in other approaches [19], label values
are changed in order to process images with a low processing age
first. This change permits obtaining a higher accuracy both in the
reconstructed point clouds, and in the estimated extrinsic camera pa-
rameters.

The remaining of the paper is organized as follows. Section 2
reviews some of the state-of-the-art techniques presented literature
and highlights the main problems. Section 3 introduces the adopted
processing age metric, and Section 4 presents how this can be used
in the ordering. Section 5 reports the performance of the proposed
solution in terms of accuracy, and Section 6 draws the final conclu-
sions.

2. 3D MODELIZATION VIA
STRUCTURE-FROM-MOTION: RELATED WORKS AND

MAIN ISSUES

One of the first strategies to be presented is the Bundler algorithm
[5], which starts estimating a 3D point cloud model of the scene by
coupling pairs of images according to the matching local features
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(a) Nc = 1 QF=71. (b) Nc = 2 QF=87. (c) Nc = 3 QF=71.

(d) Nc = 7 QF=67. (e) Detail for image c. (f) Detail for image d.

Fig. 1. Effects of multiple compression stages on SIFT descriptors. QF values are referred to the last coding stage. Images (e), (f) reports a
detail from images (c), and (d), respectively (green squares). Yellow circles are referred to the keypoint fount at the last coding stage , blue
circles are referred to the corresponding keypoint found at the previous coding stage.

[10]. Similar to [5], the VisualSfM software [15] implements a mul-
ticore bundle adjustment using GPU-optimized SIFT.

For every image Ii ∈ I (i = 0, . . . , N − 1), the approach in [5]
compute a set of ni SIFT keypoints Si = {mi,k, k = 0, . . . , ni},
where the pixel position mi,k (in homogeneous coordinates) is asso-
ciated to the k-th descriptor si,k. Moreover, it is possible to assume
that, without loss of generality, the pixel mi,k is also associated to
the a 3D point Pk via the pinhole camera model [9]

mi,k = Ki [Ri|ti]Pk (1)

whereKi is the intrinsic matrix,Ri and ti define the orientation and
the location of the camera that acquired image Ii.

Given an initial couple of images Ii, Ij , it is possible to gen-
erate the set Si,j = {(mi,k,mj,h)| s.t. si,k matches sj,h}. If no
wrong matches are present, k = h for all the couples in Si,j (i.e.,
they are associated to the same 3D point). At this point, both cam-
era parameters and a sparse 3D model can be reconstructed via a
resection-intersection strategy [9] and then refined by a bundle ad-
justment strategy [20, 21] implemented via a least-square minimiza-
tion.

This initial reconstruction is then refined and enriched by addi-
tional points including the other images of the dataset following a
specific track. It is necessary to find an ordering that avoids process-
ing weakly-matched images before strongly-matched ones since the
first couples that are included in the model have a stronger impact
on the 3D point estimation [22].

To this purpose, SfM-based reconstruction strategies computes
a similarity/dissimilarity metric for couples of images that permits
inferring an optimal ordering. The solutions in [23, 24] computes
a similarity value between every couple (Ii, Ij) by estimating the
geometrical relation that links keypoint locations. These values are
then used to label the edges of a weighted connectivity graph (which
can be represented by a correspondence or a distance matrix), and an
optimal sequence is found applying graph optimization algorithms.

The approach in [5] estimates the fundamental matrix using the 8-
points algorithm; this estimation permits removing outliers and gen-
erating the new set of matched points S′i,j , whose cardinality is used
to generate the correspondence matrix.

Differently from Bundler, the approach [16] divide the image
clustering in two phases: a broad and a narrow phase. The broad
phase operates an iterative Maximum Spanning Tree on a correspon-
dence matrix where only a subset of all the SIFT keypoints (the ones
with the largest scales) were considered. Then, a refinement is oper-
ated by the narrow phase using the MSAC algorithm leading to more
accurate distance measurements.

A first attempt to include forensic analysis in SfM strategies was
presented in [25], where an estimator of the interpolation parameters
is used to identify the images that were acquired by the same camera
model with similar configuration. According to this information,
images are clustered in order to obtain a first coarse estimate of the
intrisic camera parameters to be used in the general reconstruction
algorithm.

Note that all these solutions do not take into consideration
the quality of the processed images, which proves to be signifi-
cant whenever the number of conjugate points decreases. In fact,
as it is shown in Fig. 1, an image that has been edited and com-
pressed several times presents a reduced number of matching key-
points/descriptors and the keypoint locations could be significantly
altered (reducing the accuracy of estimation).

3. A FORENSIC PROCESSING AGE METRICS FOR
STATIC IMAGES

Previous works have shown that the statistics of DCT coefficients
c of natural images can be well modelled by parametric probability
density function (pdf) such as Laplacian [26], generalized Gaussian,
laplacian+impulsive [27], and Cauchy [28]. In this work, we define
the probability mass function (pmf) of the absolute values of quan-
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(a) Nc = 1 QF=85. (b) Nc = 2 QF=81.

(c) Nc = 3 QF=77. (d) Nc = 4 QF=85.

Fig. 2. Probabilities p0,1(c) (blue values) and the fitted model
pf0,1(c) for the image 3 of dataset fountain compressedNc times.
Parameter QF is referred to the last quantization stage.

tized DCT coefficients c located at frequencies (u, v) as pu,v(c).
According to the previous works on coefficient modellization, it is
possible to approximate pu,v(c) as

pfu,v(c) =Γe−π(c), (2)

where π(·) is a polynomial of third degree and Γ is a normalizing
constant. In this way, it is possible to include both a Laplacian and
a Gaussian model for the absolute value of quantized coefficients
avoiding the fitting problems related to the generalized Gaussian.

Experimental results have showed that the fitting accuracy de-
pends on the number of compression stage operated on the image.
Fig. 2 shows that the deviation of the pu,v(c) from pfu,v(c) increases
with the number of coding operations. This fact has been highlighted
in the multimedia forensic literature of the last years, and as a matter
of fact, it suggests the possibility of parameterizing the number of
operations applied on the image Ii via the fitting accuracy.

Since pfu,v(c) and pu,v(c) are pmfs, their similarity (or the pro-
cessing age ai for the image Ii under analysis) can be measured
using the Jensen-Shannon divergence, i.e.,

ai = DJS(p||pf ) =
1

2

∑
c

p(c) log2

p(c)

pf (c)
+

1

2

∑
c

pf (c) log2

pf (c)

p(c)

(3)

where indexes (u, v) have been omitted for the sake of clarity.
When referred to the data in Fig. 2, we have that the processing

age values ai are respectively 0.2314 (a), 0.2980 (b), 0.3848 (c),
1.6117 (d). Note that the corresponding PSNR values (in dB) with
respect to the original uncompressed image (which is not available
in a real case) are 40.61 (a), 39.44 (b), 38.02 (c), 37.52 (d). It is
possible to conclude that the proposed no-reference metric permits
ordering the processed image according to an objective quality eval-
uation. These values can be used to weight the similarity between
images as it will described in the following section.

4. THE PROPOSED ALGORITHM

Frequently, SfM algorithms model the similarity σi,j between cou-
ples of images (Ii, Ij) using the number of matching points, i.e., the
cardinality |Si,j |. The values σi,j are then used to label the edges of
a complete graph: by optimizing the graph, it is possible to find the
optimal track. The proposed solution employs an iterative algorithm
which operates on the matrices

Mi,j =

{
|Si,j | ∀ j > i
0 otherwise

(4)

and
Ai,j =

ai + aj
2

(5)

(which is normalized so that maxi,j Ai,j = 1).
At first, the algorithm computes the matrix W as

Wi,j =

{
Mi,j

Ai,j
if Mi,j ≥ .75 Mmax

0 otherwise
(6)

where Mmax = maxi,jMi,j . At each iteration, the algorithm con-
siders only the rows and columns of images already processed find-
ing the couple of nodes (i, j) that maximizes Wi,j , includes these
in the reconstruction (if not already present), removes the element
(i, j) from matrix M , and then iterates recomputing W . In this
way, the algorithm processes couples of images with many common
points so that the first partial 3D models can be dense and accurately-
aligned as much as possible; moreover, such accuracy contributes to
minimizing estimation errors on both camera parameters and loca-
tions. Furthermore, by dividing matrix M with matrix A, images
with the highest processing age are processed first (with respect to
the same number of matches). The following section will show how
this choice permits improving the reconstruction quality.

5. EXPERIMENTAL RESULTS

In our tests, we verified the performance of our similarity metric
with some standard benchmark datasets with known ground-truth
camera motion to quantitatively evaluate the reconstruction accu-
racy. To this purpose, we used the datasets related to the work
[29]. We compared our results with values obtained by the standard
Bundler’s ordering method.

The processed dataset was generated as follows. Every image
(which was initially available in lossless format) was compressed a
random number of times (uniformly distributed between 1 and 10)
using a JPEG coder. The adopted Quality Factor (QF) is obtained
by computing different independent realizations of a Poisson distri-
bution clamped between 50 and 100 and a mean of 80. This con-
figuration was used since the generated QF values are very close to
those frequently found on downloaded images. Lower QF values
compromise the quality of images with modest bit rate saving.

In the analysis phase (generating ai), every image is recom-
pressed with QF = 100 (to enhance the effects of previous com-
pressions), and then the proposed processing age metric is computed.
In this computation we considered the coefficients located at fre-
quency (1, 0). For every dataset we performed this test 10 times and
took the average results.

Table 1 reports the MSE values computed on the estimated
camera parameters. The MSE of matrices R and t were almost
always improved (improvement is more significant for datasets
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Name
MSE(f) MSE(R) MSE(t) RMS(PointCloud)

Bundler Proposed Bundler Proposed Bundler Proposed Bundler Proposed
fountain-P11 283 277 (−2.3%) 0.278 0.355 (+28%) 11.1 4.05 (−63%) 0.147 0.112 (−24%)

Herz-Jesu-P8 846 1, 376 (+63%) 0.0511 0.034 (−33%) 19.9 0.87 (−96%) 0.069 0.063 (+10%)

entry-P10 772 187 (−76%) 0.183 0.119 (−35%) 1.88 2.07 (+10%)

castle-P19 1, 775 1, 378 (−22%) 0.328 0.241 (−27%) 5.32 3.69 (−31%)

Herz-Jesu-P25 169 168 (−0.6%) 0.231 0.146 (−37%) 16.1 11.5 (−29%) 0.054 0.061 (+12%)

castle-P30 1.3e4 7.1e4 (+438%) 0.454 0.225 (−50%) 14.1 9.99 (−29%)

Global mean +67% −26% −40% −0.7%

Table 1. Accuracy of different parameters (focals fi, orientations Ri, locations ti, and 3D points Pk) for the proposed and the Bundler
algorithms.
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Fig. 3. Mean square error of the estimated orientation matrices
MSE(R), camera locations MSE(t) (subplot a), and the point
cloud MSE(Pk) (subplot b) for the proposed strategy and the
Bundler approach.

Herz-Jesu). The MSE of the focal length, instead, is more vari-
able (see the results for the dataset castle-p30, as an example). Other
tests performed on this dataset seemed to have suffered from very
high spikes of errors, too. Note that the fluctuations are not related
to the dimension of the dataset; therefore, we are confident that the
proposed algorithm can scale with no problems.
The last column shows the results obtained with the ICP (Iterative
Closest Point) algorithm. For the analysis we used the ground truth
high density meshes provided with some of the datasets. For faster
calculations we subsampled 100.000 random points from them. It is
possible to appreciate that in these cases the improvement is not so
relevant.

Final tests were devoted to testing the proposed solution on real

data (not synthetically generated). To this purpose, we applied the
designed strategy to the notredame dataset [5] generating differ-
ent subsets of images with different cardinalities. In this case, the
reference model is provided by the dense point cloud generated by
processing all the images in the dataset. Figure 3 reports the MSE
values for the estimated orientation matricesR, the camera locations
t, and the point cloud Pk obtained with the proposed solution and
with the standard Bundler approach on image subsets with differ-
ent cardinalities. Data were generated averaging the results obtained
from 10 different random subsamplings.

The results reported in Fig. 3(a) show that the proposed solution
permits improving slightly the accuracy of camera parameters. The
accuracy increment is more evident for the generated point cloud:
the average MSE values obtained by the proposed solution are ap-
proximately 40 % lower than the values generated by the Bundler
strategy. It is also possible to notice that the improvement in the ac-
curacy of the extrinsic parameters increases as the number of images
grows. Additional details are reported at [30].

6. CONCLUSIONS

The paper presented a new 3D reconstruction strategy for heteroge-
neous collections of images that employs a forensic quality metric
to order images and build the 3D reconstruction track. The core
strategy relies on processing first those images that were generated
with a limited number of editings; this number is parameterized by
a no-reference forensic processing age metric, which is computed
from image pixels. The proposed solution permits improving the es-
timation accuracy of both the orientation and location coordinates
in exchange for a little precision penalty in the focal length. Future
work will be devoted in improving the reconstruction performance
by including additional metrics in the ordering process.
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