
LOW LIGHT IMAGE ENHANCEMENT BASED ON TWO-STEP NOISE SUPPRESSION

Haonan Su and Cheolkon Jung

School of Electronic Engineering, Xidian University, Xian 710071, China
zhengzk@xidian.edu.cn

ABSTRACT

In low light condition, the signal-to-noise ratio (SNR) is low
and thus the captured images are seriously degraded by noise.
Since low light images contain much noise in flat and dark re-
gions, contrast enhancement without considering noise char-
acteristics causes serious noise amplification. In this paper,
we propose low light image enhancement based on two-step
noise suppression. First, we perform noise aware contrast en-
hancement using noise level function (NLF). NLF is used to
get a noise aware histogram which prevents noise amplifica-
tion, and we use the noise aware histogram in contrast en-
hancement. However, the increase of intensity by contrast
enhancement reduces the visibility threshold, which makes
noise visible by human eyes. Second, we utilize a just no-
ticeable difference (JND) model from luminance adaptation
to suppress noise based on human visual perception. Exper-
imental results show that the proposed method successfully
enhances contrast in low light images while minimizing noise
amplification.

Index Terms— Contrast enhancement, image enhance-
ment, just noticeable difference, low light, noise level func-
tion, noise reduction

1. INTRODUCTION

Images captured in low light condition have low dynamic
range and are seriously degraded by noise. Many attempts
have been made to enhance the contrast of low light im-
ages. However, most of traditional contrast enhancement
techniques [1][2][3] do not consider noise characteristics,
thus leading to noise amplification while improving con-
trast. Therefore, some contrast enhancement and denoising
methods have been proposed in recent years. Malm et al.[4]
proposed structure-adaptive anisotropic image filtering to re-
duce noise while preserving structure. Then, tone mapping
was introduced to enhance image contrast. Loza et al.[5] de-
signed non-linear luminance enhancement and simultaneous
noise reduction based on local dispersion of wavelet coeffi-
cients and a shrinkage function. Sun et al.[6] also achieved
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contrast enhancement and noise reduction in the wavelet do-
main. The contrast enhancement was performed by limited
adaptive histogram equalization (CLAHE) in the low pass
layer, while the noise reduction was conducted by a nonlinear
transform in the high pass layer. Although three methods
reduced some noise, they still amplified noise in contrast
enhancement, especially for low light images. Rivera et al.
[7] acquired 256 transformation function by content-aware
histogram equalization which considered edge-contrast pairs.
Edge-contrast pairs have the intensity difference between
neighboring pixels larger than a threshold. They enhanced
images by mapping curves by simulating the human visual
system (HVS). However, this method cannot provide insuf-
ficient enhancement in contrast and luminance for low light
images. Lim et al.[8] first performed contrast enhancement
on noise-free pixels, and then interpolated the missed noisy
pixels by low rank matrix completion. However, this method
leads to severe degradation of texture and details due to the
removal of noise pixels.
In this paper, we propose low light image enhancement based
on two-step noise suppression. We adopt NLF and JND mod-
el in contrast enhancement for noise suppression. First, we
perform noise aware contrast enhancement by equalizing a
noise aware histogram considering both local contrast and
noise level. The noise level is the standard deviation of noise
in a local region, which is estimated by NLF. Noise aware
contrast enhancement prevents contrast overstretching in flat
and dark regions. However, contrast enhancement increases
intensity and thus reduces the visibility threshold for human
visual perception, which makes noise visible. We estimate
the visibility threshold using a JND model which represents
the minimum intensity difference which can be perceived
by human visual system (HVS), i.e. luminance adaptation.
Second, we perform perceptual noise reduction in the detail
layer based on the JND model. Fig. 1 illustrates the flowchart
of the proposed method.

2. NOISE AWARE CONTRAST ENHANCEMENT

Histogram-based contrast enhancement of low light images
often causes severe noise amplification and over-enhancement
without considering noise characteristics. Two reasons leads
to this problem as follows: 1) Low light images often have
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Fig. 1. Flowchart of the proposed method. V is visibility threshold by JND. l and l′ are intensities in the original image and its enhanced
image, respectively. CE is contrast enhancement.

(a) (b)

(c) (d)

Fig. 2. High contrast map in Car and its histograms. (a) Original
image. (b) High contrast map. (c) Noise level according to inten-
sity by (2). (d) Original histogram (blue) for (a) and noise aware
histogram (red) for (b).

large flat regions with narrow dynamic range and invisible
noise. In Fig. 2(a), image Car contains large flat regions
in ground and wall which has the highest probability in the
original histogram (blue) in Fig. 2(d). The highest probabil-
ity causes histogram over-stretching in these region, which
results in over-enhancement of contrast and noise; 2) Noise
level becomes larger in low intensity (0-10), and decreases
rapidly as intensity increases as shown in Fig. 2(c). That
is, noise affects low intensity more severely than high one.
Thus, low intensity should be enhanced small to prevent seri-
ous noise amplification.
To overcome the two problems, we consider image content
and noise level in the noise aware histogram which extracts
high contrast pixels with larger local contrast than noise level
. First, we estimate local contrast c in a region as follows [9]:

c(x, y) =

√
(gσ ∗ l2)(x, y)
(gσ ∗ l)2(x, y)

(1)

where l is the original image pixel; and gσ is a Gaussian ker-
nel with the standard deviation σ. We define the noise level
n(I) as follows:

n(I) =
I + σ(I)

I
(2)

where σ(I) is the standard deviation of noise by NLF; and
the noise level n(I) represents the relative noise ratio. Fig.
2(c) shows the noise level varying with intensity. In general,
noise in low light images is signal dependent, which is repre-
sented by the generalized signal dependent noise model and
Poisson-Gaussian noise model[10][11]. In this work, we use
the generalized signal dependent noise model which repre-
sents most of camera noise including Poisson noise[11]. NLF
for the generalized signal dependent noise model is expressed
as follows:

σ(I) =
√
I2γ · σ2

u + σ2
w (3)

where γ is the exponential parameter which controls the de-
pendence on the signal, u and w are zero-mean Gaussian dis-
tributions with variances σ2

u and σ2
w. The parameters are esti-

mated in [11]. Above all, the histogram of high contrast pixels
is obtained as follows:

p(I) =

∑
(x,y)∈BI

l(x, y)∑
(x,y)∈S l(x, y)

(4)

where

S = {(x, y) : c(x, y) > n(x, y)} (5)
BI = {(x, y) ∈ S : I = 0, 1, ..., 255} (6)

where S is the set of high contrast pixels whose local contrast
is higher than the noise level;BI is the subset of S which con-
tains the pixels whose intensity is I; and n(x, y) is the noise
level calculated by (2). Fig. 2(b) shows high contrast map
in Car by (5) where white pixels mean pixels with high con-
trast. High contrast map is composed of high contrast pixels
obtained by (5). Fig. 2(d) shows the noise aware histogram
(red) obtained by (4)-(6) which removes severe noise in dark
regions while preventing histogram spikes which causes over-
enhancement. In this work, we adopt AGCWD[3] for con-
trast enhancement which minimizes overstretching of the his-
togram in large flat regions. We perform AGCWD from the
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(a) (b) (c) (d)

Fig. 3. Contrast enhancement results in Classroom by AGCWD[3]. (a) Original image. (b) Enhancement by the original histogram. (c)
Enhancement by the noise aware histogram. (d) Mapping curve by the original histogram (blue) and the noise aware histogram (red).

noise aware histogram, and show the contrast enhancement
results in Fig. 3. As shown in the figure, noise is successful-
ly removed in dark and large flat regions even after contrast
enhancement.

3. JND-BASED NOISE REDUCTION

Although noise aware contrast enhancement reduces noise in
dark and large flat regions, noise still remains in the result-
s (see Fig. 3). There are two main reasons: 1) Contrast
enhancement brightens images but decreases JND threshold
calculated by (8), which makes noise more visible (see the
top right corner of Fig. 1); 2) Global contrast enhancemen-
t provides a coarse adjustment on noise without considering
locality, and signal dependent noise becomes serious and is
distributed in all intensity. Thus, we perform a fine adjust-
ment for noise reduction based on JND model considering
locality. We perform base-detail layer decomposition using
anisotropic diffusion-weighted bilateral filtering [9]. Due to
the first reason, we reduce noise based on the ratio of JND
thresholds before and after contrast enhancement. Due to the
second reason, we first analyze the effect of histogram stretch-
ing on noise amplification in textural and smooth regions. The
histogram stretching in textural regions enhances details, and
noise is less visible in the textural regions by contrast masking
phenomenon[12]. However, noise amplification in smooth re-
gions is more severe, which results in the degradation of vi-
sual quality. Thus, we perform noise reduction differently ac-
cording to the textureness in a local region. We perform noise
reduction in the detail layer as follows:

dout(x, y) = e ·
V (l′

(x,y)∈S(x, y))

V (l(x,y)∈S(x, y))
d(x, y) (7)

where

V (l(x, y)) =

{
k1 · (1− 2l(x,y)

256 )λ1 + 1 l(x, y) ≤ 128

k2 · ( 2l(x,y)256 − 1)λ2 + 1 otherwise
(8)

S = Inv(S){(x, y) : c(x, y) ≤ n(x, y)} (9)

where dout(x, y) and d(x, y) are outputs of noise reduction
and noise aware contrast enhancement in the detail layer, re-
spectively; l(x, y) and l′(x, y) are the original image and its

(a) (b)

Fig. 4. JND-based noise reduction result in Car. (a) Detail layer
after noise aware contrast enhancement. (b) Noise reduction result.

Fig. 5. Test images for experiments. Left top to bottom right: Car,
Classroom, Restaurant, Sofa, Chair and Bookshelf

enhanced result by noise aware contrast enhancement, respec-
tively; V (x, y) is the visibility threshold generated by JND
model [12][13]; k1, k2, λ1, and λ2 are constants; S is the in-
verse of S; and e is the control parameter of noise reduction
degree. We perform noise reduction in the region where the
local contrast is the same as or smaller than the noise level,
i.e. smooth and textural regions. We segment the original im-
age into smooth and textural regions by the statistical property
of textureness[11]. Fig. 4 shows the JND-based noise reduc-
tion result in Car. Finally, we enhance colors of the image as
follows[14]:

Me(x, y) =Mo(x, y) · (
le(x, y)

l(x, y)
)γ (10)

where Me(x, y)and Mo(x, y) are trichromatic channel value
of output color image and original image; le(x, y) and l(x, y)
are gray images from noise reduction results and original im-
ages.
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Fig. 6. Experimental results for three test images. Top to bottom: Car, Classroom, and Restaurant. (a) Original images. (b) ACEWC [5]. (c)
CADIE[7]. (d) Proposed method.

4. EXPERIMENT RESULTS

For experiments, we use a PC with Intel (R) Core (TM) i5
CPU (2.60GHZ) and 4.00GB RAM running a Windows 7 en-
vironment and MATLAB. For quantitative measurements, we
evaluate the performance of the proposed method in terms
of three measures [7]: Luminance index, contrast index, and
structural index. The three measures evaluate luminance en-
hancement, contrast enhancement, and structural similarity
between the original images and their enhanced results, re-
spectively. We set e to 0.3-0.7 for smooth regions, and 0.8-1.2
for textural regions in (7). Also, we set k1, k2, λ1, and λ2 to
2.0, 0.8, 3.0, 2.0 in (8), respectively. We set γ to 0.6 - 1.0 in
(10). We compare the performance of the proposed method
with those of ACEWC [5] and CADIE [7], i.e. state-of-the-art
methods. As shown in Fig. 5, we use six test images for test-
s: Car, Classroom, Restaurant, Sofa, Chair and Bookshelf.
We capture them in low light condition using a digital cam-
era of Canon EOS 60D. Thus, they have a dark tone with a
narrow dynamic range and much noise. Fig. 6 shows con-
trast enhancement results for three test images. ACEWC[5]
provides the best luminance improvement but introduces too
much noise in the enhanced results without considering the
noise level in Fig. 2(c) (See the second column of Fig. 6).
CADIE[7] achieves a good performance in noise reduction
but insufficient enhancement in contrast and luminance be-
cause CADIE[7] does the content-aware histogram equaliza-
tion by edge-contrast pairs (See the third column of Fig. 6).
However, severe noise in low light condition degrades image
edges and transforms edge-contrast pairs into smooth pairs,
and thus weakens the degree of contrast enhancement such as
white car in Car, wall in Classroom, and ground in Restau-
rant. The proposed method enhances contrast in low light
images considering noise level and HVS, which achieves the

Table I
PERFORMANCE COMPARISON BETWEEN PROPOSED METHOD,

ACEWC[5], AND CADIE[7].

Methods Luminance Contrast Structure

Proposed 1.5873 1.4754 0.9833
CADIE[7] 1.3170 1.1679 0.9875

ACEWC[5] 1.7088 1.2886 0.9164

least noise amplification as shown in red boxes of Fig. 6. Ta-
ble I shows average quantitative measurement of three meth-
ods on six test images. High values in luminance and con-
trast indexes mean good luminance and contrast enhancemen-
t. Structural index is closer to 1.0, which means the enhanced
images is more similar to their original images in structure. It
can be observed that the proposed method achieves the best
performance in contrast enhancement among three methods
while providing equally good results in structural similarity
compared with CADIE[7]. Therefore, the proposed method
effectively enhances contrast in low light images while suc-
cessfully suppressing noise.

5. CONCLUSION

In this paper, we have proposed low light image enhance-
ment based on two-step noise suppression. We have used
NLF and JND model to consider noise characteristics in low
light images. First, we have utilized NLF to obtain the noise
aware histogram considering image content and noise level,
and performed noise aware contrast enhancement based on
the histogram. Second, we have employed the JND model
from luminance adaptation to suppress noise based on human
visual perception. Experiment results demonstrate that the
proposed method successfully enhances contrast in low light
images while minimizing noise amplification.
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