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ABSTRACT

Automatic tracking of rodents’ behaviors over time in their
home cages is of great interest in psycho-physiological stud-
ies. The commercially-available animal monitoring systems
use RGB videos or bio-potential signals to monitor behav-
iors of animals when exploring their surroundings. The based
models of these devices starts from several thousands of dol-
lars and the cost would increase if extra analysis features were
added. In this study, we present a low-cost, non-contact ani-
mal tracking system which records depth data from the caged
rodent to detect the animal’s location and pose over time. An
adaptive Gaussian Mixture Model (GMM) algorithm is em-
ployed to detect animal’s center of mass and extract its move-
ment trajectory over an extended period of time. The animal’s
pose is determined by applying Principle Component Analy-
sis (PCA) on 3D depth data of the located animal. In con-
junction with our previously-introduced respiratory detection
algorithm, this system can be utilized as an automatic long-
term and unobtrusive monitoring system for animal experi-
ments. We validated the tracking accuracy of our system by
monitoring two different caged voles. The voles’ locations
were correctly detected in 80% of times, while the poses were
detected correctly in 100% of times confirmed by visually in-
specting the color-coded depth videos.

Index Terms— Animal behavior monitoring, Gaussian
mixture model, Kinect depth sensor, Principle component
analysis.

1. INTRODUCTION

1.1. Animal Behavior Monitoring

Pervasive use of rodents as animal models in biological and
psychological studies have generated a growing interest in de-
veloping automated laboratory apparatus for long-term mon-
itoring of animal behaviors [1, 2]. Classically, the animal’s
behavioral patterns are watched (or taped) by researchers dur-
ing the experiments, especially when a certain stimulus is in-
duced. The real-time inspection by human observers is usu-
ally performed in short time intervals immediately after the
stimulation. Howeyver, to acquire a comprehensive evaluation
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of animal behaviors before/during/after the stimulation, long-
term monitoring of freely behaving animals in their cages
seems necessary [1, 3, 4]. Automated behavioral monitoring
systems are able to record hours or days of animal behaviors
during the experiment and make the long-term in-cage screen-
ing feasible. If equipped with further data processing units,
these systems may even highlight the behaviors of interest or
detect behavioral abnormalities, which will significantly in-
crease the researchers’ time efficiency in animal studies.

1.2. Commercial Systems

Due to the high impact of such laboratory machinery in pro-
viding high throughput analysis, different companies and re-
search groups are competing to fully automate the long-term
animal behavioral monitoring and recognition. Among them,
there are several commercial video and bio-potential monitor-
ing devices [5, 6, 7, 8]. The main focus of the video tracking
systems is on observing the behaviors of the rodents while
the animal explores the test objects and its surrounding envi-
ronment. Telemetry bio-potential monitoring systems use im-
planted electrodes to record potential body signals. The four
leading companies working on the rodent behavioral moni-
toring in the cage are ViewPoint Behavioral Technology [5],
Clever Sys Inc. [6], Noldus [7], and emka Technology [8].

ViewPoint has commercialized a neural headset that al-
lows continuous and simultaneous telemetry monitoring of
caged rodents [5]. CleverSys has designed four separate RGB
scanning system in order to provide the best angle for col-
lecting the most information from animal in each category
of behavioral studies: side-view, top-view, ventral-view, and
dual or stereo-view [6]. Noldus has introduced EthoVision
XT10 system for video tracking of rodents as a tool for be-
havioral analysis of rodents [7]. Emka Technologies provides
implanted bio-potential measurement devices for freely mov-
ing animals 50g and upward. The telemetry system is head
mounted or backpack with the ability to measure EEG, ECG,
EMG and acceleration [8]. Currently, the cost of these sys-
tems based on their functionality starts from ~ $7K and could
increase to a few hundred thousands of dollars after adding
different features such as pose detection or multiple animals
tracking.
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1.3. Our Animal Tracking System

In this paper, we present our vision-based rodent monitoring
system designed for long-term behavioral tracking of freely
moving voles in a home-cage environment. Our system lo-
cates the vole in its cage and extracts its movement trajectory
and the speed of the movement over time by capturing the
depth video of the animal using Microsoft Kinect depth sen-
sor. We model the vole as the foreground object and extract its
location by employing an adaptive Gaussian Mixture Model
(GMM) algorithm to subtract the background. According to
the calculated traveling distance in a specific time interval,
our algorithm detects the time periods during the experiment
when the animal is at rest. At these intervals, the animal’s
pose is recognized by applying principle component analysis
(PCA) on the 3D cloud of the located animal and the trunk
part of the vole as the region of interest for the respiration
estimation is selected. The details of respiration calculation
using depth data was previously presented in [9, 10].

Our system provides two key advantages compared to
the state-of-the-art automated animal monitoring systems: (i)
being completely non-contact which preserves the natural
behaviors of the animal under study, and (ii) it is developed
based on a low-cost hardware (Microsoft Kinect as one of the
inexpensive but accurate depth sensors) and an open-source
software (developed in C# and MATLAB). In addition, un-
like the implanted bio-potential measurement instruments,
it is thoroughly non-invasive for the respiration monitoring,
which is one of the most engaging physiological indicators in
psycho-physiological studies in rodents [11, 12, 13].

2. METHODOLOGY

We used a Microsoft Kinect v2 to record depth data for track-
ing and respiration monitoring of rodent voles. The advantage
of using depth sensor data instead of RGB camera in detection
is that the system can perform tracking in different lighting
conditions without performance degradation.

2.1. Animal Mask Detection

Object tracking in dynamic scenes, by modeling the objects of
interest as the foreground scenes, is an active research topic in
computer vision especially in surveillance applications [14].
In our animal tracking application, although the dynamics of
visual field is relatively limited due to voles being caged, there
still exist some situations hindering the successful tracking
of animal over an extended period of time. These include
slow moving, even motionless animal during some periods of
times, Kinect depth sensor recording noise, and moving ele-
ments of the scene such as cage’s bedding. We employed an
adaptive background mixture models to conquer these prob-
lems [15, 16].

2.1.1. Pre-processing

The depth sensor measurements are fed as images to our ob-
ject detection algorithm, after an outlier elimination and data
normalization on the raw data were applied. Due to both
inherent low signal-to-noise-ratio of Kinect depth sensor in
measuring length smaller than Smm and existence of areas
with low infrared reflectance, there are some false measure-
ments with values much greater than the maximum distance
from the Kinect camera. To deal with this issue, we clipped
these pixel values to the average of their eight neighboring
pixels and then normalized all pixel values according to the
distance of the Kinect from the floor. In addition, to speed up
the object detection and decrease the probable false detection
outside the cage, we cropped each video frame based on the
cage boarders. Since the setup is fixed during the experiment,
we just need to detect the cage within the first few frames and
use its coordinates for all of the frames during the monitoring
period.

2.1.2. Background Subtraction

One of the significant attributes of mixture of Gaussian as a
multimodal density function is its capability to create smooth
approximations of any arbitrary shaped distribution. Consid-
ering this fact, we first characterized the distribution of n pixel
values of a recently observed depth image (color-coded image
extracted from original depth data), D;, at time instance ¢ with
a weighted mixture of Gaussian distributions as:

M
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where M is the number of Gaussian distributions, w;_ ; deter-
mines the portion of the data accounted for by jth distribution,
ti¢,; and ¥ ; are the mean value and covariance matrix of the
related distribution, and A represents a Gaussian probability
density function as:
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In general, approximation of GMM is done by represent-
ing each pixel with a Gaussian distribution from the mixture
model. The standard method for likelihood maximization in
this process is Expected Maximization (EM), which maxi-
mizes the expected value of the likelihood function. How-
ever, implementing EM for each frame is a computationally
complex procedure, and it is not applicable for the real-time
tracking applications. Instead, we used a sample mode K-
means approximation to learn the model parameters. More-
over, we assumed a diagonal matrix for the covariance matri-
ces in Gaussian distributions, such that 33; ; = o7 ;I, where
0y,j 1s a scalar value for the covariance of jth distribution at
time ¢, and I is the matching size identity matrix.
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After learning the parameters of the model, probability of
each pixel in the current depth video frame is compared to a
background model threshold to determine whether it is part
of the background or the foreground. In order to model each
frame accurate enough for foreground detection while make
it computationally fast, we employed empirically three Gaus-
sian density functions to model each pixel value. To have a
long-term tracking with accurate detection, parameters of the
model are updated every three minutes after the initial learn-
ing, according to the ten recent coming frames. This updating
step especially for the cages covered with bedding is crucial,
since the background changes as the animal moves around.

By comparing the contribution of each pixel to the back-
ground against model threshold, we achieve a binary image
with foreground regions. Morphological opening and closing
operations are applied on the detected binary image to remove
noisy detections and fill the holes in the connected compo-
nents. Finally, we choose the two largest connected compo-
nents as the candidates for our target object. When the animal
is near the cage walls, the second detected object is its reflec-
tion on the wall, so we remove this unwanted object based on
the fact that its center of the mass is outside the cage. In other
cases, the second object is the noise (due to bedding pile-up
in some corners of the cage) which is removed by calculat-
ing the area of each object and discarding the smaller one.
The largest connected component in the foreground image in
a given frame then will be labeled as the animal mask at time
t, M(t). We consider the smallest rectangle that encloses the
extracted M(t) as the bounding box of detected object, B(t).

2.2. Movement Trajectory Extraction

Using the detected animal mask, M(t), and the original depth
values, D;, we compute a weighted average of the depth mea-
surements inside the animal body mask to determine its center
of the mass coordinates at time ¢:
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where CX and CY are the row and column of the mass center,
respectively. b, and b, are the row and column of the diagonal
end point of bounding box, B(t), and b,, and b; are the width
and length of the 5(t), respectively.

We use the location of the mass center, C~ (¢) and CY (t),
in each frame to find the movement trajectory and speed of the
animal over the time. Based on the distance traveled during
different time intervals, we can determine whether or not the
animal was stationary during a particular interval.

2.3. Animal Pose Detection

We create a 3D cloud using the depth measurements inside
the animal body mask and apply the classical principal com-
ponent analysis (PCA) approach on the cloud data to com-

pute the direction of the highest variance of this cloud to get
the pose direction of the animal in each frame. Before exe-
cution of PCA, we scale the pixel values of each frame to the
metric pixel dimensions to enable PCA to estimate the actual
body direction, this scaling is done using the setup and Kinect

camera configuration:
z(ory)

gery) — Xtan(“HE) XL (4)
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where S* and SY are scaling factors for row and column val-
ues, R* and RY are horizontal and vertical space resolution of
the Kinect camera, F%_, and FY, are horizontal and verti-
cal camera’s field of view, and L is the distance of the camera
from floor. Field of view of camera in each direction gives us
the largest angle of side view with respect to the vertical view.
By calculating the tangent of this angle and scale it with re-
spect to the camera distance and space resolution, we can find
the scaling factor for pixel values.

2.4. Respiratory Rate Estimation

After determining the trunk part of the vole according to its
position in stationary time intervals, the depth data is ready to
be presented to our respiratory rate measurement algorithm,
described in details in [9].

3. EXPERIMENTAL RESULTS

We conducted two sets of experiments: (1) preliminary depth
data recording of restrained voles in order to obtain distance
with the highest movement tracking resolution, and (2) pri-
mary (main) depth data recording from freely moving voles
in their home cages for the tracking purpose.

3.1. Finding Distance with Highest Resolution

In the preliminary experiment, in order to find the distance
with highest depth resolution, we restrained one vole and col-
lected depth video in different distances, while the animal was
breathing. We changed the distance from 50cm to 90cm with
10cm increments and recorded four minutes of depth video
in each distance. We also simultaneously collected side-view
RGB videos and performed visual inspection on each video to
obtain respiration rate ground truth for calculating the respi-
ratory estimation error in each distance. Using the respiration
estimation algorithm developed in our previous work [9], the
most accurate estimation was obtained at 80cm.

3.2. Animal Movement Trajectory and Pose Direction

In the primary experiment, the Kinect camera was setup on
top of a cage in 80cm and 10 minutes of depth video record-
ings from two different voles in the cage were collected to
validate the tracking performance of our approach. Our algo-
rithm detected the animal in each video frame and showed the
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Fig. 1: (a) Original depth video frame with superimposed center of mass
and bounding box; (b) extracted foreground mask with detected information.
The left hand component is the reflection of the vole in cage wall which is
discarded by the algorithm; (c) movement trajectory of the vole inside the
cage for one minute of tracking.

foreground mask along with the original depth videos with the
detection information, including center of mass and bounding
box, superimposed to both frame images as shown in Fig. 1(a)
and (b). After a series of morphological image processing, the
binary image in Fig. 1(b) shows three connected components.
Considering the two largest components, the left hand one is
the reflection of the vole in cage wall, which its center of the
mass is outside the cage. The remaining component is the
detected vole in the cage.

We have verified our detection system by visually inspect-
ing the color-coded depth videos which were recorded from
two different voles in their cage for 10 minutes. It detected the
vole correctly in 80% of times and there were no detection in
other times. Assuming that consecutive miss-detections are
less than one second and the animal does not have any sud-
den movement at this time interval, we compensated the miss-
detections by applying a linear extrapolation on most recent
extracted locations from recorded history and used the same
bounding box for the frames with no animal detection.

One of the voles’ movement trajectory inside the cage dur-
ing one minute monitoring is illustrated in Fig. 1(c). After an-
alyzing each vole’s trajectory, we found that the voles tend to
move along the boarder of the cage and repeat that trail. Our
algorithm also calculates the travelling distance and average
speed of each vole’s over time. For instance, in one minute of
high activity period, the traveling distance of one of the voles
was 434cm and the average speed of that time intervals was
around 7.2cm/s.

After extracting the foreground mask of each depth frame
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Fig. 2: 3D representation of the detected vole in the bounding box superim-
posed with its first principle component showing the animal’s pose direction.

in the recorded video, the detection information was used to
detect animal’s pose in that frame. All of the pixel positions
were scaled using the Equation (4) with the space resolution
of 514 x424 pixels and field-of-view of 70.6x60 degrees for
the Microsoft Kinect V2. Pose direction of each vole was
detected by applying PCA on the scaled 3D depth data and
choosing the first principal component as the body main di-
rection. Our pose estimation algorithm could estimates the di-
rection of the animal in 3D space correctly for all of the video
frames. Fig. 2 displays representation of one of the voles in a
bounding box, centered in animal’s mass center, and its main
body direction. The angle between the cage’s Cartesian co-
ordinates and the first principal component is satisfactory for
classifying the animal position in two classes of standing and
on-all-fours as well as its head direction in on-all-four pose.

4. CONCLUSION AND FUTURE WORK

In this paper, we introduced an automatic non-contact track-
ing system designed for unobtrusive behavior monitoring of
in-caged rodents. By integrating our previously-developed
respiratory monitoring algorithm [9], the presented system
provides an accurate but low-cost means to researchers for
studies requiring long-term animal behavior monitoring. We
tested our system on two sets of data recorded from two differ-
ent voles in a cage, using Microsoft Kinect depth sensor. The
animal’s movement trajectory were extracted using an adap-
tive GMM algorithm for background estimation and online
object tracking. In addition, we applied PCA on 3D represen-
tation of animal’s depth data to detect pose direction of the
vole in the cage. To the best of our knowledge the only work
on automatic behavior assessment of animals using depth sen-
sor is [17], in which the Microsoft Kinect camera was em-
ployed for behavioral tracking of caged mice, which are quite
larger than voles, hence easier to detect/track. As part of a
future work, we aim to perform tracking as well as behavioral
analysis on multiple voles interacting in a single cage, as these
laboratory models are valued for their similar social behavior
to humans. One of our candidate models for tracking multiple
objects will be recursive Bayesian state estimation method.
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