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ABSTRACT

Correlation filter-based tracking methods have accomplished
competitive performance on accuracy and robustness, but
there is still a huge potential in choosing suitable features.
Recently, Convolutional Kernel Networks (CKN), which
provide a fast and simple procedure to approximate kernel
descriptors, have been proposed and achieved state-of-the-art
performance in many vision tasks. In this paper, we present
an adaptive tracker which integrates the kernel correlation
filters with multiple effective CKN descriptors. By adopt-
ing a FlipFlop scheme, the weights of different features can
be adjusted in the process of tracking to get better perfor-
mance. Extensive experimental results on the OTB-2013
tracking benchmark show that our approach performs fa-
vorably against some representative state-of-the-art tracking
algorithms.

Index Terms— correlation tracking, convolutional kernel
networks, adaptive multiple features

1. INTRODUCTION

Visual tracking, whose goal is to estimate the states of the
target in the subsequent frames[1], plays a critical role in
numerous computer vision applications such as surveillance,
robotics and behavior analysis. Although decades of research
have been studied in this field, it is still a challenging and
interesting task due to several complication factors, such as
background clutter, illumination variation, partial occlusions
and deformation.

From the perspective of the foreground and background
information usage, the mainstream tracking methods can be
categorized into generative ones and discriminative ones.
Generative trackers focus on establishing robust appearance
models of the target by using templates or subspaces and
performing tracking by searching the best-matching windows
[2, 3]. While discriminative trackers often construct online
classifiers which aim to distinguish the target from its back-
grounds [4, 5, 6, 7]. It has been proved that background
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information involved in discriminative methods is advanta-
geous in effective tracking [8].

In particular, the correlation filter-based discriminative
trackers have made significant achievements recently and
attracted much attention [9, 10, 11, 12]. As proposed in
[13], by expanding single-channel filter to multi-channels
and replacing original pixel values with Histogram of Ori-
ented Gradients (HOG), Kernelized Correlation Filter (KCF)
tracker is more competitive in performance than state-of-the-
art trackers with high speed running at hundreds of frames-
per-second. Considering that the HOG is a hand-crafted
feature, it is necessary to extract more effective features for
better performance.

Recently, Convolutional Kernel Networks (CKN) [14], as
a simple convolutional neural network to approximate patch-
based kernel descriptors [15], have been developed to provide
a end-to-end image representation and demonstrated state-of-
the-art performance in many vision tasks, such as classifica-
tion [14] and image retrieval [16]. Although these semantic
representations are shown to be very effective in categorizing
and capturing original spatial details of objects [17], they are
not the optimal representation for visual tracking. To achieve
better performance, it is imperative to combine multiple fea-
tures for best representation and separate foreground targets
from the background clutters.

Decision-theoretic online learning (DTOL) [18] is a
framework to dynamically allocate resources among some
experts and capture learning problems proceeding in rounds,
which is suitable for combining multiple responses to final
decision in visual tracking. Hedge algorithm, which uses a
set of experts to explain the observations regardless of how
the observations are generated, is first proposed to solve the
DTOL problem. The resource assignment of each expert
depends on the cumulative loss of this expert and a learning
rate parameter. However, Hedge algorithm cannot ensure the
best prediction in various applications as the best learning
rate cannot be obtained at all times [19]. AdaHedge [20] and
FlipFlop [21] are both proposed by Tim et al. to overcome
the drawback of the original Hedge algorithm. By dividing
original learning problem to sub-problem, the learning rate
parameter can be directly obtained by a part of the loss, which
makes the decision more close to the optimal result. Consid-
ering the superiority of FlipFlop, in this paper, we use this
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Fig. 1. The process of proposed tracking method.

method to combine all basis trackers for better results.
Contributions: The contributions of this work are three-fold.

(1) To the best of our knowledge, we are the first to intro-
duce CKN into visual tracking, which adopts CKN descrip-
tors with KCF framework as basis trackers.

(2) We propose an adaptive FlipFlop algorithm based on
DTOL framework for visual tracking by considering the cu-
mulative loss of basis trackers.

(3) We carry out extensive experiments on a large-scale
benchmark dataset [1] with 51 challenging sequences to
demonstrate the effectiveness of the proposed algorithm with
comparisons to state-of-the-art trackers.

2. PROPOSED TRACKING ALGORITHM

2.1. Pipeline

As shown in Fig. 1, correlation filters integrate with CKN
descriptors are considered as basis trackers, then adaptive
FlipFlop algorithm which combines all basis trackers is used
to predict the final position.

The first step of our method is extracting image features.
Three pre-trained CKNs proposed in [16] are used to extract
features from the cropped image region, which represent the
target with different semantic. CKN-raw directly feeds the
raw RGB patch to the network which captures the hue in-
formation but sensitive to environment illumination. PCA-
whitening pre-processing consists in each sub-patch of CKN-
white, which makes it more invariant to color. Taking the
gradient along each spatial dimension with 1× 1 sub-patches
as the input for the network, CKN-grad is fully invariant to
color.

Then, each feature map is used to construct basis track-
ers. As a generalization of HOG, CKN descriptors can be
approximately considered as block-cyclic with unfixed block
size. So we use an adaptive cell size in this paper to agree
with the formation of KCF tracker. Similar to KCF [13], ba-
sis tracker model consists of the learned target appearance x
and the transformed classifier coefficients

α = F−1(
Y

κ(X ,X ) + λ
), (1)

where κ(, ) is kernel function, X = F(x),Y = F(y), F(.)
denotes discrete Fourier transformation (DFT), F−1 denotes
the inverse of DFT and y is a Gaussian shape label matrix.
And the response map of each basis tracker is obtained by

C = F−1(κ(Z,X )�F(α)), (2)

where Z = F(z) and patch z with the same size of x is
cropped from the new frame, the symbol � denotes element-
wise product.

All response maps are finally combined to form a stronger
tracker, which exploits the strength of different CKN descrip-
tors for robust performance. In the t-th frame, the final target
position is predicted by weighted decisions of all trackers

C∗t =

K∑
k=1

ωkt C
k
t ,

(x∗t , y
∗
t ) = arg max

x,y
C∗t (x, y),

(3)

where ωkt is the weight of basis tracker k and
∑K
k=1 ω

k
t = 1,

Ckt is the confidence map and C∗t (x, y) denotes the element
at position (x, y) of response matrix C∗t .

2.2. Adaptive FlipFlop

Following the DTOL framework, each expert’s weight needs
to be updated after the prediction of the ultimate target posi-
tion, which depends on the loss that expert incur. In this work,
the loss suffered by expert k at frame t is defined as:

lkt = Ckt (x∗t , y
∗
t )−max(Ckt ), (4)

where max(Ckt ) returns the largest element of the matrix Ckt .
Let Lkt = lk1 + ... + lkt denotes the cumulative loss of

expert k after t frames. The loss incurred by Hedge in frame
t is ht = ω>t lt (ωt = [ω1

t , ..., ω
K
t ]>, lt = [l1t , ..., l

K
t ]>) and

the cumulative Hedge loss is Ht = h1 + ...+ ht.
Learners performance is evaluated in terms of its regret,

which is the difference between the cumulative Hedge loss
and the cumulative loss of the best expert: Rt = Ht − L∗t ,
where L∗t = mink L

k
t .

Our goal is to minimize the regret after T frames, which
crucially depends on learning rate η [20]. To this end, it turns
out to be technically convenient to approximate ht by the mix
loss mt = − 1

η ln(ωt · e−ηlt), which accumulates to Mt =
m1 + ...+mt. Let δt = ht −mt denotes the mixability gap
and ∆t = δ1 + ... + δt denotes the cumulation, so that the
regret for Hedge may be decomposed as

Rt = Ht − L∗t = Mt − L∗t + ∆t. (5)

As the cumulative mixability gap ∆t is nondecreasing in
t and can be observed online, it is possible to adapt the learn-
ing rate directly based on ∆t [20]. Following the FlipFlop
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Fig. 2. The weights of CKN descriptors in sequence Crossing.

algorithm, the learning rate ηt now alternates between infin-
ity, such that the algorithm behaves like Follow-the-Leader
(FTL), and the AdaHedge value [20], which decreases as a
function of the mixability gap accumulated over the rounds

ηt =

{
ηflip
t =∞, if t ∈ Rt
ηflop
t = lnK

∆t−1
, if t ∈ Rt

, (6)

where Rt is the flip regime, which is the subset of times
{1, ..., t} and Rt is the flop regime, Rt ∪Rt = {1, ..., t}.

Then the weight and mix loss can be updated using this
new learning rate ηt, for flip regime:

wkt =

{
1, if Lkt = L∗t
0, otherwise

,

mt = L∗t − L∗t−1,

(7)

and for flop regime:

wkt =
wk1e

−ηtLk
t−1

ω>1 e
−ηtLt−1

,

mt = − 1

ηt
ln(ω>t · e−ηtlt).

(8)

where ω1 = [1/K, .., 1/K]> and Lt−1 = [L1
t−1, ..., L

K
t−1]>.

After that, new cumulative mixability gaps ∆t and ∆t can
be obtained respectively by

∆t =

{
∆t−1 + δt, if t ∈ Rt
∆t−1, if t ∈ Rt

,

∆t =

{
∆t−1, if t ∈ Rt
∆t−1 + δt, if t ∈ Rt

,

(9)

where δt = ht −mt.
FlipFlop starts with an epoch of the flip regime until ∆t >

(ε/τ)∆t where ε and τ are scale parameters. At that point
it switches to an epoch of the flop regime, and keeps using
ηflop
t until ∆t > τ∆t. Then the process repeats with the next

epochs of the flip and flop regimes [21].
Fig.2 illustrates the process of FlipFlop in sequence

Crossing. It can be observed that the weight of CKN-raw
works only for the first half of the sequence, and the weight
of CKN-grad and CKN-white compete with each other in the
whole video.

Fig. 3. Evaluation results on OTB-2013 database.

2.3. Update Scheme

During tracking, the target object may move through different
lighting conditions, become occluded by other objects, or its
pose or appearance may undergo significant changes. There-
fore, filters need to adapt for robustness quickly.

For each basis tracker, we update its corresponding filter
(αkt ,x

k
t ) over time with the same learning rate τ by

αkt =

{
(1− τ)αkt−1 + τα̂k, if rk > threshold
αkt−1, otherwise

,

xkt =

{
(1− τ)xkt−1 + τ x̂k, if rk > threshold
xkt−1, otherwise

,

(10)

where α̂k, x̂k are learned from the ultimate target position,
rk is the reliable scores of basis tracker k defined as rk =

1
1+exp(−max(Ck

t ))
.

Obviously, a small reliable score indicates the heavy oc-
clusion, abrupt motion, scaling or sudden pose change of tar-
get in the current frame. Thus, for a score in the current frame
smaller than a predefined threshold (0.55 in this work), we
keep previous filters.

3. EXPERIMENTAL RESULTS

3.1. Experiment Setup

To evaluate the performance of our tracker, we conduct ex-
periments on the benchmark dataset OTB-2013 proposed in
[1], which includes 51 challenging image sequences. All se-
quences are categorized into 11 attributes based on differ-
ent challenging factors, including illumination variation, scale
variation, occlusion, deformation, motion blur, fast motion,
in-plane rotation, out-of-view, background clutters, and low
resolution.

To carry out comprehensive and fair comparisons, we
compare our approach with all tracking algorithms reported
in [1] (e.g., Struck [22], TLD [23], ASLA [24] and SCM
[25]) and some state-of-the-art tracking methods including
CN [12], KCF [13], TGPR [26] and DSST [27]. These track-
ers are evaluated using the source codes from the original
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(a) Subway (b) Jogging (c) Bolt

(d) Singer2 (e) Dudek (f) Doll

Fig. 4. Qualitative results of 8 trackers over sequences Subway, Jogging, Bolt, Singer2, Dudek and Doll.

authors and each is run with default parameters. Our method
is implemented in MATLAB and all experiments are carried
out on an Intel Core i5 processor with 3.1 GHz frequency and
6 GB RAM.

3.2. Quantitative and Qualitative Evaluation

Quantitative evaluation: Fig. 3 shows the precision plots
and success plots of the trackers on 51 videos. Experimental
results are reported using overlap success (OP) plots and cen-
ter location error (CLE) plots. For precision plots, we rank
the trackers according to the results at the error threshold of
20 pixels. For success plots, the trackers are ranked accord-
ing to the AUC scores. The precision scores and AUC scores
for each tracker are shown in the legend. Only top 10 of the
trackers are displayed for clarity.

It can be observed that our method ranks 1st on preci-
sion rate and success rate, whose precision score is 0.777 and
overlap rate is 0.551. In the precision plots, our algorithm
performs 5% better than KCF and 5.4% better than DSST.
We can also observe from the precision plots that our method
performs slightly better than others when the location error
threshold is smaller than 10 pixels. This is possibly because
that the CKN descriptors can achieve a pixel-level similarity
measure. In the success plots, our tracker outperforms TGPR
by 5.8% and KCF by 7.2%. When given a specific overlap
threshold (e.g., 0.5), our method still achieves the best perfor-
mance.
Qualitative evaluation: As shown in Fig. 4(a)(b) , the tar-
gets in sequences Subway and Jogging are undergo heavy oc-
clusion. In sequence Subway, a person is occluded by other
people (e.g.,#41, #96). Only our method, TGPR, SCM and
KCF can track the target stably. In the Jogging sequence,
the left girl is occluded fully by the telegraph pole (e.g.,#73).
Only our method and TLD can track the target successfully
(e.g., #83, #92). Our method performs favorably because it
employs an update scheme based on reliable scores.

Fig. 4(c)(d) illustrate some screenshots of tracking results
in three challenging sequences where the target appearances

undergo severe deformation. In the Bolt sequence, several
objects appear on the screen with rapid appearance changes
due to shape deformation and fast motion. Our method, CN
and DSST algorithms can track the target stably. The TGPR,
SCM, Struck and KCF methods suffer from severe drift at the
beginning of the sequence (e.g.,#15, #25). The TLD algo-
rithm drifts to the background at frame #115. The target in
the Singer2 sequence undergoes both deformation and illu-
mination variations. Our method performs well in the whole
sequence as adaptive FlipFlop scheme exploits the strength of
different CKN descriptors, which is robustness to appearance
variations.

To evaluate our method in more general cases, we select
some sequences with in-plane or/and out-of-plane rotations.
It can be observed from Fig. 4(e)(f) that rotation of the tar-
get makes it much more indistinguishable in a new frame and
casts a more difficult problem in tracking. In sequence Dudek,
the person rotates his head for about 360 degrees. TGPR,
TLD, SCM and KCF sometimes drift away with occlusion or
illumination variation (e.g., #385, #763, #946). Our method
locks the target till the end with the correct scale. In the Doll
sequence, SCM and TLD drift several pixels away from the
target due to scale variation (e.g., #1959). Struck, KCF, CN
and DSST drift away with fast motion blur and background
change (e.g., #680, #2389). Only TGPR and our tracker suc-
cessfully track the doll in the whole sequence.

4. CONCLUSION

To improve the performance of correlation filter-based track-
ing methods, we introduce a model which integrates KCF
with multiple effective CKN descriptors under DTOL frame-
work. With the loss of each basis tracker is considered and
FlipFlop algorithm is adopted, the weights of different fea-
tures can be adjusted in the process of tracking. Comprehen-
sive experimental comparisons with the state-of-the-art algo-
rithms on 51 challenging sequences demonstrate the effec-
tiveness of the proposed tracking method.

1940



5. REFERENCES

[1] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang, “Online
object tracking: A benchmark,” in CVPR, 2013, pp.
2411–2418.

[2] David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-
Hsuan Yang, “Incremental learning for robust visual
tracking,” IJCV, vol. 77, no. 1-3, pp. 125–141, 2008.

[3] Chenglong Bao, Yi Wu, Haibin Ling, and Hui Ji, “Real
time robust l1 tracker using accelerated proximal gradi-
ent approach,” in CVPR. IEEE, 2012, pp. 1830–1837.

[4] Shai Avidan, “Support vector tracking,” TPAMI, vol.
26, no. 8, pp. 1064–1072, 2004.

[5] Helmut Grabner, Michael Grabner, and Horst Bischof,
“Real-time tracking via on-line boosting.,” in BMVC,
2006, vol. 1, p. 6.

[6] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie,
“Visual tracking with online multiple instance learning,”
in CVPR. IEEE, 2009, pp. 983–990.

[7] Fan Yang, Huchuan Lu, and Ming-Hsuan Yang, “Robust
visual tracking via multiple kernel boosting with affinity
constraints,” T-CSVT, vol. 24, no. 2, pp. 242–254, 2014.

[8] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang, “Object
tracking benchmark,” TPAMI, vol. 37, no. 9, pp. 1834–
1848, 2015.

[9] Zhe Chen, Zhibin Hong, and Dacheng Tao, “An ex-
perimental survey on correlation filter-based tracking,”
arXiv preprint arXiv:1509.05520, 2015.

[10] David S Bolme, J Ross Beveridge, Bruce A Draper, and
Yui Man Lui, “Visual object tracking using adaptive
correlation filters,” in CVPR. IEEE, 2010, pp. 2544–
2550.

[11] João F Henriques, Rui Caseiro, Pedro Martins, and
Jorge Batista, “Exploiting the circulant structure of
tracking-by-detection with kernels,” in ECCV. Springer,
2012, pp. 702–715.

[12] Martin Danelljan, Fahad Shahbaz Khan, Michael Fels-
berg, and Joost Van de Weijer, “Adaptive color attributes
for real-time visual tracking,” in CVPR, 2014, pp. 1090–
1097.

[13] João F Henriques, Rui Caseiro, Pedro Martins, and
Jorge Batista, “High-speed tracking with kernelized cor-
relation filters,” TPAMI, vol. 37, no. 3, pp. 583–596,
2015.

[14] Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and
Cordelia Schmid, “Convolutional kernel networks,” in
NIPS, 2014, pp. 2627–2635.

[15] Liefeng Bo, Xiaofeng Ren, and Dieter Fox, “Kernel
descriptors for visual recognition,” in NIPS, 2010, pp.
244–252.

[16] Mattis Paulin, Matthijs Douze, Zaid Harchaoui, Julien
Mairal, Florent Perronin, and Cordelia Schmid, “Lo-
cal convolutional features with unsupervised training for
image retrieval,” in ICCV, 2015, pp. 91–99.

[17] Liefeng Bo, Kevin Lai, Xiaofeng Ren, and Dieter Fox,
“Object recognition with hierarchical kernel descrip-
tors,” in CVPR. IEEE, 2011, pp. 1729–1736.

[18] Yoav Freund and Robert E Schapire, “A desicion-
theoretic generalization of on-line learning and an ap-
plication to boosting,” in EuroCOLT. Springer, 1995,
pp. 23–37.

[19] Shengping Zhang, Huiyu Zhou, Hongxun Yao, Yanhao
Zhang, Kuanquan Wang, and Jun Zhang, “Adaptive nor-
malhedge for robust visual tracking,” Signal Processing,
vol. 110, pp. 132–142, 2015.

[20] Tim V Erven, Wouter M Koolen, Steven D Rooij, and
Peter Grünwald, “Adaptive hedge,” in NIPS, 2011, pp.
1656–1664.

[21] Steven De Rooij, Tim Van Erven, Peter D Grünwald,
and Wouter M Koolen, “Follow the leader if you can,
hedge if you must.,” JMLR, vol. 15, no. 1, pp. 1281–
1316, 2014.

[22] Sam Hare, Amir Saffari, and Philip HS Torr, “Struck:
Structured output tracking with kernels,” in ICCV.
IEEE, 2011, pp. 263–270.

[23] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas,
“Tracking-learning-detection,” TPAMI, vol. 34, no. 7,
pp. 1409–1422, 2012.

[24] Xu Jia, Huchuan Lu, and Ming-Hsuan Yang, “Visual
tracking via adaptive structural local sparse appearance
model,” in CVPR. IEEE, 2012, pp. 1822–1829.

[25] Wei Zhong, Huchuan Lu, and Ming-Hsuan Yang, “Ro-
bust object tracking via sparsity-based collaborative
model,” in CVPR. IEEE, 2012, pp. 1838–1845.

[26] Jin Gao, Haibin Ling, Weiming Hu, and Junliang Xing,
“Transfer learning based visual tracking with gaussian
processes regression,” in ECCV. Springer, 2014, pp.
188–203.

[27] Martin Danelljan, Gustav Häger, Fahad Khan, and
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