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ABSTRACT

We propose a practical combinatorial approach for addressing

the challenging task of vehicle tracking in Wide area motion im-

agery (WAMI) by leveraging a pixel accurate co-registered vector

road-map. Specifically, guided by the co-registered road network,

we obtain a sparse trellis graph linking each vehicle detection (VD)

in a WAMI frame with a road reachable VD in the next frame, which

then allows us to enumerate all possible hypotheses tracks. The glob-

ally optimal selection of tracks over a K frame window is then for-

mulated as a minimum cost K capacitated facility location problem,

where each hypothesis track is allocated VDs in each frame and as-

signed a cost that models desirable properties of vehicle track. Com-

putation of optimized combinations of jointly feasible tracks that

minimize the total cost for the tracks becomes feasible in our for-

mulation for moderate values of K by utilizing available solvers for

the facility location problem. The approach automatically selects the

optimal number of tracks and provides flexibility in defining costs

for tracks globally across the K frames. Vehicle tracking results ob-

tained over test WAMI datasets indicate that our proposed method

provides significant better performance than two other state of the

art alternatives.

Index Terms— Wide area motion imagery, vehicle tracking, K

capacitated facility location problem, vector road network

1. INTRODUCTION

New aerial imaging platforms offer motion imagery with rich spatio-

temporal information that enables a host of new applications. We

focus particularly on urban area wide area motion imagery (WAMI)

that offers a high resolution picture sequences covering a “city-

scale” area within each frame at temporal rates of 1-2 frames per

second [1–3]. In this setting, we consider the problem of tracking

the many vehicles present in the field of view. Specifically, given

vehicle detections (VDs) in each frame, the goal is to associate

detections that correspond to the same vehicle over the entire set

of the WAMI frames into a vehicle track. Generally speaking, the

vehicle tracking in WAMI is a challenging problem due to many

factors such as the large number of the vehicles encountered that do

not necessarily have strong discriminative features, the low temporal

sampling rate, and frequent vehicles occlusions.

In this paper, we propose a novel combinatorial approach to

solve the vehicle tracking in WAMI globally across K WAMI frames

that are pixel accurately co-registered with a vector road network

(RN). From the VDs detected in the entire set of the K WAMI

frames, our approach starts with building a trellis graph (TG) [4]

whose vertices are the VDs and the edges represent possible asso-

ciation from one VD to another. The pixel accurate co-registered

vector (RN) allows us to sparsify the TG by limiting the associa-

tion possibilities (number of edges) from each VD to only reach-

able VDs via the RN. Then, we parse the TG to generate all pos-

sible hypotheses tracks where each hypothesis track is assigned a

cost that penalizes deviations from common behaviors of a vehicle

track. Finally, we model the tracking problem as K capacitated fa-

cility location problem (KCFLP) [5], where track ≡ facility and VD

≡ client. Analogous to the KCFLP, our goal is to select a subset

tracks from the hypotheses tracks such that the sum of the selected

track costs is minimum where the selected subset tracks must sat-

isfy two constraints: (a) each VD is assigned to only one track and

(b) the selected tracks must have capacity K, i.e., an assigned VD

in each frame. Our idea is presented on an illustrative example in

Fig. 1. The proposed approach is scaled naturally to address large

number of WAMI frames. Specifically, we partition these frames

into multiple K frame temporal windows, solving the KCFLP for

each window, and combining the estimated tracks within the tempo-

ral windows using the proposed approach. The TG is formed in this

case by linking the estimated tracks within each K temporal window

instead of linking VDs.

Prior work on vehicle tracking also exploits the context provided

by a co-registered RN as well as other geographic information sys-

tem (GIS) sources to enhance vehicle tracking performance [6, 7].

In [8], co-registered RN information is utilized to constrain the suc-

cessive frame to frame VDs associations. Similarly, in [9], road

orientation is estimated based on the movement of the current es-

timated vehicle tracks, which is used to constrain the assignment in

future frames. However, these techniques are prone to ID switches

especially when vehicles are moving in two-way road. Also wrong

associations encountered across frame pairs are persistent, i.e., can

not be corrected in future frames.

Another category of tracking techniques approaches the assign-

ment problem globally over set of frames. Although the assignment

problem is NP-hard when estimated for more than two frames, there

are polynomial time complexity algorithms that have globally opti-

mum solution in specific cases such as the network flow formula-

tion [10–12]. One limitation of the network flow based techniques is

that the cost of a hypothesis track must be decomposable as a prod-

uct of pairwise cost terms and thus preclude the ability to incorporate

higher order motion models (such as constant velocity/acceleration

motion model) into the track cost. Other techniques approximately

solve the assignment problem globally for more than two frames

with utilization of higher order motion models [13, 14]. These tech-

niques use a heuristic approach that iteratively solves the assignment

problem between two frames while keeping the assignment between

the other frames fixed, and therefore require good initial assignment

solution to converge to good local optimum, i.e., the quality of the

final assignment solution is sensitive to good initialization.

Compared with previous tracking techniques, our approach also

utilizes a co-registered RN information but in a fundamentally differ-

ent manner. Specifically, the co-registered RN not only sparsifies the
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Fig. 1: Illustrative example shows the main steps of our proposed approach. In (a), we sketch a set of VDs contained in 3 frames (I1, I2, and

I3) represented in (magenta, cyan, and green) colors respectively, and overlaid with the co-registered RN. (b) shows the TG formed from the

VDs shown in (a) augmented with a dummy node (0) in each frame to handle spurious and missed-detections. The RN help us to reduce the

number of association possibilities and render the TG sparse. The assignment cost of the jth VD within the ith frame to a hypothesis track

hn generated from the TG is represented by Cn
i,j and we show Cn

i,j for all i, j, n in (c). In our example, h2 is composed of z11 , z21 , and z32 ,

and thus the assignment cost for these VDs is 1 and for the other VDs is ∞. Solving the KCFLP yields hypotheses tracks h2, h3, h4, and hH

as an optimal solution. The solution comprises the hypothesis selection binary indicators yn, and additionally, the VDs assignments to the

selected hypotheses tracks represented by the assignment binary indicators Xn
i,j for all i, j, n as shown in (d).

TG and consequently render our combinatorial approach tractable,

but also plays an important role in assessing hypotheses tracks that

are generated from TG as we discuss shortly. Moreover, our novel

formulation of the tracking problem as KCFLP : (a) allows cost to

be defined flexibly to assess the hypotheses tracks globally across

the K frames, (b) estimates the optimal number of tracks (≡ opened

facilities) automatically, and (c) does not require any initialization

since all hypotheses tracks are generated in advance.

This paper is organized as follows. Section 2 explains our for-

mulation for vehicle tracking problem. Results and a comparison

against alternative methods are presented in Section 3. We conclude

the paper in Section 4.

2. OUR COMBINATORIAL APPROACH FOR VEHICLE

TRACKING

Our goal in this paper is to estimate vehicle tracks in WAMI within

a temporal window consisting of a set of K WAMI frames I =
{Ii}

K
i=1, where frame Ii contains Ni VDs and the WAMI frames

in I are co-registered with a vector road network (for example us-

ing [15, 16]). In the following we discuss the three main parts of

our proposed algorithm. First, we describe how we form a trellis

graph from the VDs. Then, we illustrate the hypotheses tracks gen-

eration from the trellis graph. Finally, we outline the optimal tracks

selection formulation.

2.1. Trellis graph formation

Let Z = {zij |i ∈ {1, . . . ,K}, j ∈ {0, . . . , Ni}} be the set of all

VDs in I, where zij is the location of the jth VD in the ith frame and

zi0 is a dummy VD that we add for frame Ii to account for spurious

and missed-detections. Figure 1 (a) shows an example of a set of

VDs contained in 3 frames and overlaid on the co-registered RN.

We construct the trellis graph G = (Z, E) whose nodes are the

set Z and its edges E = {
(

zij , z
n
m

)

|znm ∈ N
(

zij
)

}. The ordered

pair
(

zij , z
n
m

)

defines a directed connection link from zij to znm where

N
(

zij
)

is the neighbourhood of zij that contains all VDs that can be

associated with zij . We state that znm ∈ N
(

zij
)

if two conditions are

satisfied: (a) n = i + 1 and (b) ϑ
(

zij , z
n
m

)

≤ τ , where ϑ
(

zij , z
n
m

)

is the minimum distance of travel on the road network from zij to

znm, and τ is a threshold that is determined based on the maximum

distance a vehicle can travel between successive WAMI frames. The

minimum distance of travel ϑ (a, b) is determined by the shortest

route on the road network between the two locations a and b, which

is estimated in our current implementation by Dijkstra’s shortest path

algorithm [17].

Figure 1 (b) shows the TG for the VDs shown in (a). The RN

help us to reduce the number of association possibilities and render

the TG sparse as shown in the figure. For example, z24 (VD # 4

in I2) can not be reached via the RN from z14 (VD # 4 in I1), i.e.,

ϑ
(

z14 , z
2
4

)

= ∞ in this example, because there is no route between

them, and therefore there is no link between them in the TG although

they are spatially close.

2.2. Hypotheses tracks generation

From the constructed TG, we obtain the set of all possible hypothe-

ses tracks H = {h1, . . . , hH}, where H is the number of all pos-

sible hypotheses tracks generated from the TG. A hypothesis track

hn consists of a sequence of nodes that define a path on TG which

starts with a node (VD) in I1 and ends with a node in IK , i.e.,

hn =
(

z1n1
, z2n2

, . . . , zKnK

)

.

Note that, multiple hypotheses tracks can claim the assignment

of the same VD. In other words, the hypotheses tracks can conflict

with each other, because in reality, a VD can be claimed only by one

track. Our goal is to optimally select a non-conflicting subset from

the hypotheses tracks such that no VD is assigned to more than one
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selected track. Similarly, the goal of the KCFLP is to select a sub-

set from a set of potential facilities such that each client is assigned

to only one facility. Thus, we formulate our tracking problem as

KCFLP and benefit from the efficient and effective algorithms pro-

posed for the long studied KCFLP [5].

To formulate our tracking problem as KCFLP, we need to gen-

erate all hypotheses tracks (≡ facilities) from the TG, defining the

cost of assigning a VD to a hypothesis track (≡ client to facility as-

signment cost), and defining a cost for selecting a hypothesis track

(≡ facility opening cost). We define the cost of assigning a VD to a

hypothesis track as

C
n
i,j =

{

1 if zij ∈ hn,

∞ otherwise.
(1)

Example of Cn
i,j for all i, j, n shown in Fig. 1 (c). Since h2 is

composed of z11 , z21 , and z32 in this example, the assignment cost for

these VDs is 1 and for the other VDs is ∞.

Each hypothesis track hn is assigned a selection cost fn that pe-

nalizes deviations from common behavior of a vehicle track. Specif-

ically, we define fn to be proportional to (1) track motion smooth-

ness, (2) directional chamfer distance [18] between track and the

RN, (3) track length excluded dummy VDs. Formally,

fn = pm(hn)pr(hn)pl(hn), (2)

where

pm(hn) ∝
1

K − 1

K−1
∑

i=2

‖zi+1
ni+1

− 2zini
+ z

i−1
ni−1

‖ (3)

is defined as in [13] and penalizes the motion irregularities1 of vehi-

cle track,

pr(hn) ∝
1

K

K
∑

i=1

min
m

d
(

z
i
ni
, χ

m
)

+ λ|θ
(

z
i
ni

)

− θ (χm) | (4)

measures the directional chamfer distance between hn and the RN,

which penalizes deviations of vehicle track from the RN in both dis-

tance and orientation mismatches; where χm is the nearest point to

zini
in the RN, θ

(

zini

)

is the orientation angle of hn at zini
, θ (χm)

is the orientation angle of the road contains the point χm, and λ is a

constant. Finally,

pl(hn) ∝ exp(−l(hn)) (5)

penalizes short vehicle tracks or tracks with many missed-detections,

where l(hn) =
∣

∣{zij |z
i
j ∈ hn, j 6= 0}

∣

∣ counts the number of VDs

in hn excluding dummy VDs.

2.3. Optimal tracks selection

Given : (a) the set of detections Z, (b) the set of hypotheses tracks

H, (c) the cost Cn
i,j of assigning zij to hn for all i, j, n, and (d) the

cost fn of the hypothesis track hn for all n, our goal is to select a

subset from the hypotheses tracks H and the assignment of VDs to

the selected subset of the hypotheses tracks that minimize the sum of

the costs for the selected subset of the hypotheses tracks and for the

VDs assignment to the selected subset of the hypotheses tracks. To

accomplish this, we define a binary indicator variable yn that takes

the value 1 if hn is selected and 0 otherwise. Similarly, we define a

binary indicator variable Xn
i,j that takes the value 1 if zij is assigned

1The proposed approach is also applicable with more sophisticated mo-
tion models than the simple constant velocity model we use in this paper.

to hn and 0 otherwise. Our tracking problem goal now is to find yn
and Xn

i,j for all i, j, n, that minimize

H
∑

n=1

K
∑

i=1

Ni
∑

j=0

C
n
i,j X

n
i,j +

H
∑

n=1

fnyn, (6)

subject to the constraints

Ni
∑

j=0

X
n
i,j = yn, ∀n, ∀i, (7)

H
∑

n=1

X
n
i,j = 1, ∀i, ∀j 6= 0, (8)

X
n
i,j ∈ {0, 1}, ∀n, ∀i, ∀j, (9)

yn ∈ {0, 1}, ∀n. (10)

The constraint (7) ensures that if hn is selected (i.e., yn = 1), it

must have a single assigned VD in each frame. Otherwise, (if not

selected, i.e., yn = 0), there is no any assigned VD to it in any

frame. In other words, VDs are assigned only to a selected hn. The

constraint (8) ensures that a VD assigned only to one selected track.

The constraints (9) and (10) force Xn
i,j and yn to be binary, respec-

tively. Note that the constraint (7) is equivalent to

K
∑

i=1

Ni
∑

j=0

X
n
i,j = Kyn, ∀n,

which, in the KCFLP terminology, states that each facility must have

exactly capacity K, i.e., exactly K clients must be assigned to facil-

ity. This constraint establishes the mapping between our tracking

problem and the KCFLP. Figure 1 (d) shows the estimated yn and

Xn
i,j for all i, j, n in the illustrative example, where, the hypotheses

tracks h2, h3, h4, and hH are being selected.

3. EXPERIMENTAL RESULTS

We evaluated our approach on two WAMI data sets: (1) Corvus-

Eye dataset that is recorded using the CorvusEye 1500 Wide-Area

Airborne System [19] for the Rochester, NY region, and (2) Wright-

Patterson Air Force Base (WPAFB) 2009 dataset [20], which was

recorded over the WPAFB, OH region. For the vector road map, we

use OpenStreetMap (OSM) [21], which provides each road in the

road network in a vector format along with properties of each road

such as its type (highway, residential, etc), one or two-way road,

number of lanes, etc. We use the method in [16] for co-registering

the WAMI frames to the vector road map. We obtain the VDs by

background subtraction, where the background is estimated using

median filter as in [9]. We implement our approach using C++ and

adopt the solver in [22] for solving (6). Our unoptimized tracker

implementation runs at 0.16 frame/second for2 K = 5.

In order to evaluate our tracking methodology in different sce-

narios, we carefully create three test sequences such that each test

sequence has its own characteristics. The test sequence “Seq1”

is formed by cropping a region from the CorvusEye dataset that

contains a forked one-way roads with different directions and also

a lot of occluders (bridges, trees, etc.). The sequences “Seq2”

2The value of K poses a trade-off between the quality of the estimated
tracks and the computational cost. Experimentally, we found K = 5 pro-
vides estimated tracks with good quality at reasonable computational cost.
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(a) “Seq1” (b) “Seq2” (c) “Seq3”

Fig. 2: Test sequences used in our evaluation. Each test sequence contains 30 frames and we show the first frame from “Seq1”, “Seq2”, and

“Seq3”, in (a), (b), and (c) respectively. All roads in “Seq1” and “Seq3” are one-way roads, while roads in “Seq2” are two-way roads.

and “Seq3” are formed by cropping two different regions from the

WPAFB dataset. Both “Seq2” and “Seq3” cover regions that are

clearly observed (no occluders) but all roads in “Seq2” are two-way

roads, while roads in “Seq3” are one-way roads. All test sequences

are ground truth labeled and composed of 30 frames. We show the

first frame from each sequence in Fig. 2.

We compare our method with the methods in [8] and [9] that also

exploit the RN information for estimating vehicle tracks in WAMI.

We quantify the performance of the tracking methods by the mea-

sures defined in [23] which are (1) the total number of ID switches

for the tracked vehicles compared to their ground truth label (IDS↓),

(2) the number of mostly tracked vehicles (MT↑), and (3) the num-

ber of mostly lost vehicles (ML↓). In addition to these measures,

we report the Multiple Object Tracking Accuracy (MOTA↑) defined

in [24] (with cs = 1).

Seq GT Method MT↑ ML↓ PT IDS↓ MOTA↑

1 77

[8] 38 4 35 85 0.963

[9] 32 4 41 105 0.954

Prop. 40 6 31 62 0.973

2 54

[8] 43 11 2 91 0.887

[9] 44 6 4 95 0.882

Prop. 49 4 1 4 0.995

3 42

[8] 38 0 4 9 0.985

[9] 38 0 4 16 0.974

Prop. 39 0 3 3 0.994

Table 1: Tracking performance comparison between our proposed

approach (prop.) and the methods in [8] and [9] evaluated on our

three test sequences. The tracking performance measures are the

total number of ID switches (IDS↓), the number of mostly tracked

vehicles (MT↑), the number of mostly lost vehicles (ML↓), the num-

ber of partially tracked vehicles (PT), and Multiple Object Tracking

Accuracy (MOTA↑)

Table 1 shows for each test sequence the number of ground truth

tracks (GT) contained in this sequence, in addition to the tracking

performance measures mentioned above for each tracking method.

From the table, we can draw three important conclusions. First, the

performance of our proposed approach is significantly better than

the methods in [8] and [9] for all test sequences. This is because our

approach generates all hypotheses tracks first, and then optimally se-

lects the best subset from them, disregarding low quality tracks that

have high selection cost fn. Second, in the case of two-way roads

as in “Seq2”, the methods in [8] and [9] perform poorly. Because

the road direction is non-informative in this case, the methods in [8]

and [9] face a challenging situation when an ambiguous VD can be

associated with one of two conflicting tracks that are corresponding

to vehicles approaching each other from the opposite directions of

the road. A wrong association in this delicate scenario may result

in either early termination of the track as it will not find good asso-

ciation in the next frame (i.e., lower MT) or propagation of wrong

associations in future frames (i.e., higher IDS). On the other hand,

our proposed approach assigns the ambiguous VD to both conflict-

ing tracks that correspond to the opposite directions approaching ve-

hicles in this scenario, and optimally selects the best among them

considering a global cost defined in (2). This optimal selection strat-

egy of our approach is reflected in the results reported for “Seq2”

in Table 1, which show significant improvement of the tracking per-

formance for our proposed approach compared with [8] and [9]. Fi-

nally, in relatively easy sequences such as “Seq3” which contains

only one-way roads without occluders, all methods behave reason-

ably well.

4. CONCLUSION

In this paper, we propose a novel combinatorial approach to solve the

vehicle tracking in WAMI globally across K frames. Our approach

is motivated by pixel accurate co-registered vector road network with

the WAMI frames that allows us to limit the association possibilities

for each VD and consequently limits the number of considered hy-

potheses tracks and renders our approach tractable. Our approach

formulates the tracking problem as a K capacitated facility loca-

tion problem that provides an elegant way to optimally select subset

tracks from the hypotheses tracks that minimize the sum of costs for

the selected tracks. Results obtained over three test sequences that

represent different tracking scenarios show a significant performance

improvement for proposed approach compared with two state of the

art alternative methods.
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