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ABSTRACT
In this paper, we exploit deep convolutional features for ob-
ject appearance modeling and propose a simple while effec-
tive deep discriminative model (DDM) for visual tracking.
The proposed DDM takes as input the deep features and out-
puts an object-background confidence map. Considering that
both spatial information from lower convolutional layers and
semantic information from higher layers benefit object track-
ing, we construct multiple deep discriminative models (D-
DMs) for each layer and combine these confidence maps from
each layer to obtain the final object-background confidence
map. To reduce the risk of model drift, we propose to adop-
t a saliency method to generate object candidates. Object
tracking is then achieved by finding the candidate with the
largest confidence value. Experiments on a large-scale track-
ing benchmark demonstrate that the propose method performs
favorably against state-of-the-art trackers.

Index Terms— Visual tracking, deep features, saliency
proposal, convolutional neural networks (CNNs)

1. INTRODUCTION

Object tracking is one of the most important components
in computer vision and has a variety of applications, such
as robotic, surveillance and so forth [1, 2]. Despite great
progress in recent years, visual tracking remains a challenging
task due to significant appearance changes caused by illumi-
nation variations, occlusion, deformation and so on. To deal
with these problems, numerous approaches have been pro-
posed. In general, these trackers can be categorized into two
families: generative-based methods [3, 4, 5, 6, 7, 8, 9, 10, 11]
and discriminative-based methods [12, 13, 14, 15, 16, 17, 18].

The generative methods, which are based on either sub-
space or template models, formulate tracking problem as
searching for regions most similar to object. To alleviate
drift issue caused by appearance changes, object appearance
model is dynamically updated. [8] proposes an incremental
tracking method by learning and updating a low dimension
PCA subspace representation for target. In [3], a sparse
representation based tracker is proposed by solving a `1 mini-
mization problem. To improve the efficiency of sparse tracker
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in [3], [5] proposes to speedup the tracker using accelerated
proximal gradient approach. In [7], a local structural sparse
appearance model is proposed for tracking via exploiting the
inner structure of target. [9] further analyzes the structure of
object appearance and proposes a structural sparse tracker.

On the contrary, discriminative methods treat tracking as
a classification problem which aims to distinguish the target
from fast-varying background. In [18], a compressive tracker
is proposed by representing the object with feature from com-
pressed domain. [13] proposes a visual tracker based on trans-
fer learning using gaussian process regression. [17] proposes
a real-time tracker with kernelized correlation filters. Never-
theless, these discriminative methods are sensitive to defor-
mation and occlusion. To handle these problems, [16] rep-
resents object with superpixels and proposes a discriminative
tracker by distinguishing object superpixels from background
superpixels. However, it still easily results in drift in presence
of similar distractors. To deal with this issue, [14] propos-
es a discriminative model based tracker which takes similar
distractors into account. Nevertheless, this tracker is sensi-
tive to illuminative variations and occlusion because it only
uses color features for object appearance modeling which is
vulnerable to both illumination changes and occlusion.

Recently, convolutional neural networks (CNNs) [19]
have drawn extensive interests in computer vision such as
image classification [20, 21] and recognition [22, 23], owing
to their powerfulness in feature extraction. The deep features
extracted from CNNs are robust under different situations
such as illumination changes, and thus suitable to represent
object appearance for tracking task [24, 25, 26].

In this paper, we explore deep convolutional features for
target appearance modeling and propose a simple while ef-
fective deep discriminative model (DDM) for visual track-
ing. Our DDM consists of two sub-models, i.e., deep object-
background model (DOBM) and deep object-distractor mod-
el (DODM). The DOBM is to discriminate the object pix-
els from background pixels, while the DODM is to distin-
guish the target pixels from distractor (or similar object) pix-
els. Combining these two sub-models together, we can obtain
an object-background confidence map. Besides, taking into
account that deep features from different layers play different
roles in tracking (e.g., deep features from lower layers contain
more spatial information and are more useful for distinguish-
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Fig. 1. Illustration of the proposed tracking method.

ing similar objects, while features from higher layers contain
more semantic information and thus are more effective to dis-
criminate objects of different classes.), we construct multi-
ple deep discriminative models (DDMs) for each layer and
combine the outputs of these different models to obtain the
final object-background confidence map. Different from oth-
er methods which generate object candidates by simple dense
sampling, we propose to use a saliency method to get candi-
dates. The advantage of this strategy is that the candidates are
generated from the entire image instead of a local range. In
this way, we can reduce the risk of model drift. Finally, visual
tracking is achieved by finding the candidate with the largest
confidence value. Figure 1 illustrates the proposed method.
Experiments on tracking benchmark [1] with 50 sequences
evidence the effectiveness of our method.

In summary, our contributions are three-fold: (1) We pro-
pose a novel DDM for object appearance modeling and use
multiple DDMs to exploit different deep features in differen-
t layers for visual tracking. (2) To reduce the risk of model
drift, we propose to adopt a saliency method to generate ob-
ject candidates in the entire image. (3) Extensive experiments
on tracking benchmark [1] demonstrate that our tracker per-
forms favorably against state-of-the-art methods.

The rest of this paper is organized as follows. Section 2
describes the proposed approach in details. Section 3 presents
experimental results, followed by conclusion in Section 4.

2. THE PROPOSED TRACKING ALGORITHM

2.1. Deep Discriminative Model (DDM)

To distinguish object pixels x ∈ O from surrounding back-
ground pixels, we construct the DOBM via a Bayes classifier
as in [14]. Different from [14], our classifier is based on deep
features extracted from CNNs. Assume that the object region,
background region and search region are denoted byO,B and
R respectively. Let FR

Ψ be the histogram of deep feature ex-

tracted over Ψ ∈ R, FR
Ψ (b) the bth bin of F , and bx the bth

bin assigned to R(x). Thus, we are able to obtain the object
likelihood at location x with

P (x ∈ O|O,B, bx) ≈ P (bx|x ∈ O)P (x ∈ O)∑
Ψ∈{O,B}

P (bx|x ∈ Ψ)P (x ∈ Ψ)
(1)

In particular, we can compute the likelihood terms by

P (bx|x ∈ O) ≈ FR
O (bx)

|O|
, P (bx|x ∈ B) ≈ FR

B (bx)

|B|
(2)

where | · | is cardinality. Likewise, we can derive the prior
probabilities P (x ∈ O) and P (x ∈ B) as follows

P (x ∈ O) ≈ |O|
|O|+ |B|

, P (x ∈ B) ≈ |B|
|O|+ |B|

(3)

Substituting Eq. (2) and (3) into Eq. (1), we can simplify
P (x ∈ O|O,B, bx) as follows

P (x ∈ O|O,B, bx) =
FR
O (bx)

FR
O (bx) + FR

B (bx)
,x ∈ (O ∪B) (4)

For unseen pixels, i.e., x /∈ (O ∪B), their object likelihoods
are set to 0.5.

For visual tracking, distractors (or similar objects) are one
of the most common factor that causes drift. To alleviate this
issue, we use the same strategy as in [14] and build a DODM.
The DODM is similar to DOBM except that the background
region is replaced with a set of distracting regions D. Thus,
similar to Eq. (4), the DODM is defined with

P (x ∈ O|O,D, bx) =
FR
O (bx)

FR
O (bx) + FR

D (bx)
,x ∈ (O ∪D) (5)

For unseen pixels, i.e., x /∈ (O ∪D), their object likelihoods
are set to 0.5 as in DOBM.

Combining DOBM and DODM, we can get the DDM as
follows

P (x ∈ O|bx) = αP (x ∈ O|O,B, bx)+(1−α)P (x ∈ O|O,D, bx)
(6)
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Fig. 2. Illustration of the DDM.

where α is a pre-defined parameter. Using DDM, we can
obtain an object-background confidence map (see Figure 2).

Considering that both spatial information from lower lay-
ers and spatial information from higher layers benefit track-
ing, we construct multiple DDMs for each layer in CNNs. In
specific, we use VGG-16 network [22] to extract deep fea-
tures, and construct L DDMs for L layers. The final object-
background confidence map Pfinal is obtained by summating
the outputs of all DMMs as follows

Pfinal =
∑L

l=1
wlP l(x ∈ O|bx) (7)

where P l(x ∈ O|bx) is the DDM of layer l, and wl is it-
s weight. Outside the search region, we set the confidence
values of pixels to zeros (see Figure 1).

Note that although our DDM is similar to the model in
[14], there are still some significant different aspects between
these two methods. First, [14] only uses color features for ob-
ject appearance modeling, while we use deep features to mod-
el object appearance which are more robust than color fea-
tures when appearance changes. Second, we utilize multiple
DDMs to exploit different deep features in different layers. In
this way, both stability and robustness of the obtained appear-
ance model are improved. Finally, to alleviate the problem of
model drift, we propose to use saliency proposal to generate
object candidates in the entire image (see Section 2.2) while
[14] uses a simple dense sampling method to generate object
candidate in a local range.

2.2. Generating Object Candidates via Saliency Proposal

Most previous methods generate object candidates by simple
dense sampling in a local range [14, 5, 3, 16]. However, this
strategy is prone to result in drift and even failure when in-
accurate tracking happens in one frame because this will lead
to inaccurate object candidates in next frame. To solve this
issue, we adopt an efficient saliency method [27] to generate
candidates in entire image. In addition, using saliency method
can also help the tracker to accurately estimate the scale of
object. Figure 3 illustrates generating candidates.

In specific, after obtaining the saliency map of input, we
first take the object region in last frame as the first candi-
date, and then set the saliency values of pixels in the candi-
date region to zeros. After that, we select another region with
maximum saliency value as the second candidate, and set the
saliency values of pixels in this region to zeros. Iteratively,

Fig. 3. Illustration of generating object candidates.

we select object candidates until the maximum saliency value
is smaller than a pre-defined threshold θ.

2.3. Tracking and Update

When a new frame t arrives, we first compute its confidence
map P t

final using Eq. (7) and then generate object candidates
with saliency proposal in Section 2.2. Assume that the target
candidate set in frame t is denoted as Ct = {ct1, ct2, · · · , ctN},
where N is the number of candidates. Thus, we can compute
the confidence value V (ctk) of candidate ctk as follows

V (ctk) =
∑

(i,j)∈ctk
P t
final(i, j) (8)

where P t
final(i, j) denotes the confidence value of pixel at

(i, j) in frame t, and the tracking result Φt is candidate with
the maximum confidence value and can be determined by

Φt = arg max
ctk

V (ctk) (9)

To adapt our tracker to changing appearance, we update L
DDMs on a regular basis using linear interpolation as follows

P l
1:t(x ∈ O|bx) = βP l

t (x ∈ O|bx)+(1−β)P l
1:t−1(x ∈ O|bx)

(10)
where P l

t (x ∈ O|bx) is the DDM of the lth (l =
1, 2, · · · , L) layer using tracking result Φt in frame t, and
β denotes the learning rate.

3. EXPERIMENTS

Setting up: Our tracker is implemented in MATLAB on a
3.7 GHz Intel i7 Core PC, and runs at 6.5 frames per sec-
ond. We use the deep feature maps from five layers (L = 5),
i.e., Conv1-2, Conv2-2, Conv3-3, Conv4-3 and Conv5-3, in
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Fig. 5. Comparisons of precision plots of different attributes. Our method outperforms other state-of-the-art trackers.

VGG-16 network [22]. The α in Eq. (6) is set tp 0.7. The wl

in Eq. (7) is set to 1/L. The saliency threshold θ for generat-
ing candidates is set to 0.3. The learning rate β in Eq. (10) is
set to 0.15
Dataset and evaluation metric: We evaluate the proposed
algorithm on the OTB13 benchmark [1] with comparisons
to 31 trackers including 29 trackers and other two recently
published state-of-the-art trackers: TGPR [13] and KCF [17].
For better evaluation and analysis of our algorithms, the se-
quences are categorized according to 11 attributes, including
scale variation, occlusion, deformation and so on. We em-
ploy the precision and success plots defined in [1] evaluate
the robustness of the tracking algorithms.
Overall performance: Figure 4 shows the precision and suc-
cess plots of our tracker and other methods. To make it clear,
only the top 10 trackers are displayed. As shown in Figure 4,
our method ranks the first and achieves the best performance
in both precision and success ranking plots. In specific, the
proposed tracker achieves 0.779 ranking score in precision
plots and 0.565 ranking score in success plots, and outper-
forms the state-of-the-art TGPR tracker [13] with 0.766 pre-
cision ranking score and 0.529 success ranking score.
Attribute-based evaluation: The sequences in the bench-
mark dataset are annotated with 11 attributes to describe the
different challenges in tracking problem. These attributes are
helpful for analyzing the performance of trackers in differ-
ent situation. We report the performance of our tracker for
these eleven challenging attributes in Figure 5. From Fig-
ure 5, we can see that our method achieves favorable results
in nine attributes (within top 2), i.e., illumination variation,
out-of-plane rotation, scale variation, occlusion, deformation,
motion blur, fast motion, in-plane rotation and background
clutter.
Qualitative evaluation: We compare our tracker with four
state-of-the-art methods: KCF [17], TGPR [13], Struck [28]
and SCM [4]. The qualitative results are shown in Figure 6.
From Figure 6, we can see that the propose tracker performs
well in illumination variations (CarDark and Singer1), occlu-
sion (Lemming, Basketball), scale changes (Dog1 and Doll),
deformation (David3 and Bolt), while other trackers can only
handle some situations and degrade in other cases.

Basketball Bolt

CarDark Singer1

David3 Dog1

LemmingDoll

KCF TGPR SCM STRUCK Ours

Fig. 6. Qualitative results of five trackers on eight sequences.

4. CONCLUSION

This paper propose a novel deep discriminative model for
visual tracking by exploiting deep convolutional features for
object appearance modeling. By using deep features, the
appearance model obtained is robust to different situations
such as illumination changes and motion blur. Besides, to im-
prove the stability and robustness of our model, we construct
multiple deep discriminative models for different features
of different layers in CNNs, and combine them for visual
tracking. In addition, to reduce the risk of model drift, we
adopt a saliency method to generate object candidates. Object
tracking is then achieved by finding the candidate with the
largest confidence value. Experiments on a large-scale track-
ing benchmark with 50 sequences evidence the effectiveness
of our method.
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