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ABSTRACT

Recently, CNN (Convolutional Neural Network) based track-
ers have achieved promising results benefited from their ro-
bust feature representation. However, most trackers only use
features from a certain layer, which limits their performance.
In this paper, we propose a novel CNN based tracker. Firstly,
we use local detection and global detection network for tar-
get localization. In local detection network , we fuse features
from different layers to train a fully convolutional neural net-
work for target localization. In case the local detection net-
work fails when the target disappear for a while and appears
in another location, we train a global detection network to de-
tect if the target appears again. Then, we employ a correlation
filter to estimate accurate scale of the target using HOG fea-
tures extracted around predicted location. Extensive exper-
iments on various challenging video sequences demonstrate
the effectiveness of our proposed algorithm compared with
several state-of-the-art trackers.

Index Terms— Visual Tracking, feature fusion, scale es-
timation, Convolutional Neural Network

1. INTRODUCTION

Visual tracking has been playing a critical role in computer
vision for a long time which aims to estimate the bounding
box of a given target in each frame of an image sequence.
Although it has been studied for decades, visual tracking is
still an unsolved problem , because it requires designed track-
ers to be robust enough to handle several challenging factors
such as occlusion, deformation and fast motion, which lead to
large appearance change.

Many early-stage trackers rely on hand-crafted features
to describe the target. Although they may overcome some
challenging factors, the poor generalization ability limits their
performance in visual tracking.

Recently, Convolutional Neural Networks (CNNs) have
demonstrated breaking performance in computer vision tasks
such as classification and detection [1, 2, 3, 4] due to its pow-
erful capability of learning feature representation. Several
CNN based trackers [5, 6, 7, 8, 9] are proposed, and their
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Fig. 1. Tracking results using CNN features from differ-
ent convolutional layers on a representative frame of two se-
quences with various challenging factors. (a) VGG conv4-3.
(b) VGG conv5-3. (c) Ground truth.

performance has surpassed traditional methods which rely on
hand-crafted features to describe the target.

But there are several limitations of using CNN features
for tracking. Most trackers only use feature maps from the
last layer, which carry rich high-level semantic information.
Although these features are strong at distinguishing the target
from other types of objects, discarding spatial details of the
tracked target make it diffcult to distinguish different objects
from the same category. Features from lower layer which
keep more details are more powerful to distinguish objects
from the same category. However it is not robust against vari-
ous challenging factors, as shown in Figure 1. It is imperative
to combine features from different layers together to achieve
better tracking performance,

In this paper, we propose a novel CNN based tracker,
which can obtain precise location and accurate scale estima-
tion. At first, we apply VGG-Net [1] to extract hierarchi-
cal convolutional feature maps from a rectangle area around
the predicted position of the previous frame. Then, we use
skip layer fusion to combine features from high-level (conv5-
3) and low-level (conv4-3) together to predict target location
precisely via local deteciton network. If the target is occluded
by other objects, and then appears in another location, our lo-
cal detection network may fail to follow it. To solve this prob-
lem we train a global detection network to search for a pos-
sible position through the whole image to detect if it appears
again. After we get the target location, we estimate scale by
applying correlation filter on the HOG features extracted from
the area around that location.

The contributions of this paper are summarized below:
i) We develop an algorithm that uses global detection net-
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Fig. 2. The framework of our proposed tracking algorithm, (a) Feature extraction network. (b) Local detection network. (c)
Global detection network. (d) Scale estimation correlation filter.

work and local detection network working cooperatively for
target localization.

ii) We propose a novel tracking algorithm that combines
feature maps from different layers to train local detection net-
work.

iii) We conduct extensive experiments on 12 challenging
video sequences and the result demonstrates that the proposed
tracking algorithm outperforms several state-of-the-art track-
ers.

2. PROPOSED METHOD

As shown in Figure 2, our algorithm consists of four mod-
ules. At first, we extract CNN features from the region of
interest (ROI) in current frame. Then, we use local detection
and global detection network to determine the target location.
Next, we use HOG features extracted around that location to
estimate the scale. Finally, we get a credible bounding box of
the tracked target.

2.1. Feature Extraction Network

We use the VGG-Net (16 layers) trained on Image Classifica-
tion task [10] as the feature extraction network because it can
provide richer information. Since visual tracking needs to lo-
calize the target precisely, we not only use high-level features
extracted from conv5-3, but also use that from conv4-3 for
more details.

2.2. Local Detection Network

As declared in [9], FCNT bulids two networks named SNet
and the GNet on top of the selected conv4-3 and conv5-3 fea-
ture maps, and proposes an algorithm to decide when to use

SNet or GNet for detection. But in his method, he uses target
location predicted by GNet as default, which is based on the
conv5-3 layer. It may lead to larger center error because the
high-level features are more category-level and coarse.

When our proposed method makes a prediction of target
location, we use a skip layer fusion to integrate more precise
low-level features with high-level features together. Firstly,
a deconvolution layer is used to upsample the feature maps
come from conv5-3 via bilinear interpolation, followed by a
crop layer which ensures its size is the same as that of conv4-3
layer’s feature maps, then they are added together. At last, we
use a convolutional layer which has convolutional kernels of
size 5× 5 and outputs the predicted heat map of input image.

Local detection network is initialized in the first frame,
we crop a rectangle image region I1 centered at ground truth
with twice the size of the target bounding box, and reshape
it in a fix size. Then we propagate forward the reshaped ROI
through feature extraction network to get corresponding fea-
ture maps. We train local detection network by minimizing
the following loss function:

Llocal =
∥∥∥M̂1 −M1

∥∥∥2
2

(1)

Where M̂1 represents the foreground heat map predicted by
the network; M1 is a Gaussian distribution centered at the
ground truth target location.

In frame t, we crop a rectangle image It centered at pre-
vious predicted location and pass it through feature extraction
network. Then we feed feature maps from conv4-3 and conv
5-3 into local detection network and get a predicted heat map.
The location with the maximum value on the heat map is se-
lected as the center location of the target. The maximum heat
map value then serves as the confidence conft of this predic-
tion. If the confidence is lower than a threshold, we think the
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target is lost. Then we use global detection network to help
search for a possible position over the whole image.

Online update. In order to adapt to the appearance
change during the tracking process, we need to update our lo-
cal detection network. To avoid updating using contaminated
training samples, online update is conducted only if the con-
fidence of the location prediction is higher than a predefined
threshold θ. During online update, we also use information
of the first frame to improve the discriminative power for
foreground and background. Overall, local detection network
is updated by minimizing:

Llocal =
∥∥∥M̂1 −M1

∥∥∥2
2
+
∥∥∥M̂t −Mt

∥∥∥2
2

(2)

Where M̂t represents the foreground heat map predicted by
the network; Mt is a Gaussian distribution centered at the
tracking result in previous frame.

2.3. Global Detection Network

In case the local detection network loses the target, it is in-
efficient to move local detection network through the whole
image to find a possible location. We turn to RPN (Region
Proposal Network), because it takes an image as input and
outputs a set of rectangular object proposals, each with an ob-
jectess score, as proposed in [3]. Thus, if the target is lost, we
just put the next frame into RPN. Once the highest proposal
score exceeded a threshold, we think the target is found, and
mark the center of that proposal as the target location. In the
next frame, we use local detection network to track the target
again based on this location.

RPN slides a small network over the convolutional fea-
ture maps which is conv4-3 in our algorithm. This small net-
work takes as input a 3 × 3 spatial window over the feature
maps. Next, its output is mapped to a lower-dimensional fea-
ture and then fed into two sibling fully-connected layers: a
box-regression layer (reg) and a box-classification layer (cls)
to generate region proposals.

In the first frame, we train RPN end-to-end by back-
propagation and SGD, and fix its parameters during tracking
to avoid the distraction introduced by online update. The
training process follows [3], but there are two differences:

1) For visual tracking, we just need to distinguish fore-
ground from background, so we set the number of classes to
2, 0 for background and 1 for foreground.

2) The motivation of using RPN is to get proposals, so we
do not use 4-step alternating training. Due to the limitation of
training sample, we set the parameters of layers before conv5-
3 fixed, and fine-tune RPN using the first frame and given
ground truth.

2.4. Scale estimate correlation filter

During the tracking process, the target scale may change
greatly. Besides an accurate localization, we need accurate

scale estimation too. We use the method proposed at [11]
to estimate scale change of the target using correlation fil-
ters with HOG features. That is , given the center location
via local detection network or global detection network, we
compute a pyramid in a rectangular area around the target
location, and then set this pyramid to a rectangular cuboid
with size of M ×N × S, where M and N are the height and
width of the filter and S is the number of scales. And then
we extract its HOG features as train sample, calcualte desired
correlation output g with a 3-dimensional Gaussian function.
We initialize and update the scale space tracking filter using
following equation:

Al
t = (1− η)Al

t−1 + ηGtF
l
t , (3a)

Bt = (1− η)Bl
t−1 + η

d∑
k=1

F k
t F

k
t (3b)

Gt denote the FFT solution of desired correlation output
of frame t, and F l

t denote the FFT solution of l-channel HOG
features of frame t, η is the learning rate, Al

1 = G1F
l
1, B1 =∑d

k=1 F
k
1 F

k
1 .

To estimate the scale of target in current frame, we extract
a M ×N ×S rectangular cuboid z as we mention above, and
compute correlation scores y using

y = F−1

{∑d
l=1A

lZl

B + λ

}
(4)

The new scale is obtained by finding the maximum score
in y.

3. EXPERIMENTS

3.1. Experimental Setting

The proposed tracker is implemented in Matlab with Caffe[12]
framework. Both local detection network and global detec-
tion network are trained via online SGD with learning rate of
8e-7 and 0.025. We use 80 iterations to train the local detec-
tion network,100 iterations to train global detection network.
When we start tracking, local detection network is finetuned
for 2 iterations at each update step. The threshold θ for online
update is set to 0.15. If the significance is less than 0.05, we
use global detection network to search for possible position.
If its highest score of proposal is larger than 0.4, we think that
proposal is valid and use its center as new target position. All
parameters are fixed throughout the experiments.

3.2. Experimental Results

We evaluate the performance of our proposed algorithm on
12 challenging video sequences compared with 8 state-of-the-
art trackers including Struck [13], TLD [14], L1APG [15],
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Fig. 3. Screenshots of tracking results of 10 trackers on 12 video sequences

Table 1. Average overlap rate. Red fonts indicate the best
performance while blue fonts indicate the second best.

Struck TLD L1APG CSK Frag KCF DSST RPT FCNT Ours
car4 0.49 0.63 0.25 0.47 0.21 0.48 0.79 0.49 0.82 0.79
carDark 0.89 0.45 0.88 0.76 0.32 0.61 0.78 0.72 0.66 0.88
crossing 0.68 0.4 0.21 0.48 0.31 0.71 0.76 0.78 0.68 0.8
david 0.24 0.72 0.54 0.4 0.11 0.54 0.69 0.63 0.68 0.76
david3 0.29 0.1 0.29 0.5 0.67 0.77 0.46 0.8 0.74 0.78
deer 0.74 0.6 0.6 0.75 0.12 0.62 0.8 0.78 0.71 0.81
jogging-1 0.69 0.63 0.17 0.18 0.46 0.19 0.18 0.19 0.69 0.79
jogging-2 0.14 0.69 0.15 0.14 0.5 0.12 0.14 0.13 0.67 0.73
liquor 0.41 0.52 0.2 0.25 0.29 0.86 0.56 0.63 0.7 0.87
singer1 0.36 0.73 0.28 0.36 0.24 0.35 0.8 0.47 0.75 0.78
skating1 0.31 0.19 0.1 0.5 0.13 0.49 0.44 0.53 0.47 0.68
walking2 0.51 0.31 0.76 0.46 0.28 0.4 0.25 0.49 0.64 0.76
avg 0.48 0.5 0.37 0.44 0.3 0.51 0.56 0.55 0.68 0.79

CSK [16], Frag [17], KCF [18], DSST [11], and RPT [19].
We get the tracking results of these compared methods from
the benchmark [20]. To evaluate the effectiveness of feature
fusion in target localization, we also compare our tracker with
FCNT which using conv5-3 feature maps as default.

We use two criteria for quantitative evaluation: center
location error (CLE) and overlapping rate (OR). OR is de-
fined as OR = |BT

⋂
BG|

|BT

⋃
BG| , where BT denotes the bounding

box generated by trackers and BG denotes the ground-truth
bounding box. CLE is defined as the Euclidean distance be-
tween the center locations ofBT andBG. The tracking results
are summarized in Table 1 and Table 2. Overall, our tracker
outperforms the other trackers signicantly in terms of both
CLE and OR. In parparticular, the best performance of CLE
can prove that feature fusion is more precise for target local-
ization campared with FCNT. Figure 3 shows screen shots of
tracking results from different trackers.

These sequences contain several challenging factors in-
cluding background clutter, fast motion , scale and illumina-
tion variation , and occlusion, the results in the tables show
that our tracker can handle those challenging factors effec-
tively.

Background clutter. In the sequence Liquor, KCF and
our tracker can follow the target till the end. Other track-
ers may lose the target for a while, frame #922 and #1609
show that the scale estimation of KCF is less accurate than

Table 2. Central location error (pixels). Red fonts indicate the
best performance while blue fonts indicate the second best.

Struck TLD L1APG CSK Frag KCF DSST RPT FCNT Ours
car4 8.7 12.8 77 19.1 119.1 9.9 2.7 8.1 4.7 3
carDark 1 27.5 1 3.2 37.7 6 2.7 4.2 4.3 1.1
crossing 2.8 24.3 63.4 9 57.7 2.2 2.8 1.7 5.2 1.5
david 42.8 5.1 14 17.7 93 8.1 7.9 6.6 5.9 5.1
david3 106.5 208 86 56.1 12.9 4.3 96.5 4.4 8.2 4.1
deer 5.3 30.9 24.2 5 111.8 21.2 4.4 4.2 7.7 3.7
jogging-1 7.9 5.2 89.5 135 27.6 88.3 102.7 120.3 6.2 4.9
jogging-2 136.2 7.3 145.8 164.7 33.6 144.5 154.6 161.3 15.3 6
liquor 91 37.6 212.9 160.6 102.2 5.3 46.1 49.9 30.1 4.4
singer1 14.5 8 53.4 14 77.1 12.8 3.6 10.8 5.5 6
skating1 82.9 145.5 158.7 7.8 138.4 7.7 6.5 8.4 14.4 8.2
walking2 11.2 44.6 5.1 17.9 57.3 29 59.2 16.5 5.9 3.6
avg 42.6 46.4 77.6 50.8 72.4 28.3 40.8 33 9.4 4.3

out tracker. Our tracker achieves the best OR and CLE.
Faster motion. In the Deer sequence, due to fast motion,

TLD, Frag, KCF and L1APG drift away at frame #12 and
#31, our tracker achieves the best OR and CLE.

Scale and illumination variation. Frag and L1APG drift
away in sequence Car4, David and Singer1. FCNT performs
best in the sequence Car4, but in sequence Singer1, it suffers
from less accurate scale estimation. Our tracker achieves a
favorable performance compared with other trackers.

Occlusion. In Jogging-1 and Jogging-2, our tracker,
FCNT and TLD can follow the target till the end. But their
scale estimation is not so accurate as ours, so our tracker
achieves the best OR and CLE in those sequences.

4. CONCLUSION

In this paper, we propose a novel CNN based tracking algo-
rithm for robust visual tracking. Different from prior meth-
ods, we use a skip layer fusion to combine the features from
different layers together to make target localization more ac-
curate. We also hire a global detection network in case that
the local detection network fails. Scale estimation correla-
tion filter also contributes to the outstanding performance of
our tracker. Applied to visual tracking ,we achieve favorable
result against state-of-the-art methods in the challenging se-
quences.
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Michael Felsberg, “Accurate scale estimation for robust
visual tracking,” in British Machine Vision Conference,
Nottingham, September 1-5, 2014. BMVA Press, 2014.

[12] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell, “Caffe: Convolutional archi-
tecture for fast feature embedding,” in Proceedings of

the 22nd ACM international conference on Multimedia.
ACM, 2014, pp. 675–678.

[13] Sam Hare, Amir Saffari, and Philip HS Torr, “Struck:
Structured output tracking with kernels,” in 2011 Inter-
national Conference on Computer Vision. IEEE, 2011,
pp. 263–270.

[14] Zdenek Kalal, Jiri Matas, and Krystian Mikolajczyk,
“Pn learning: Bootstrapping binary classifiers by struc-
tural constraints,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on. IEEE,
2010, pp. 49–56.

[15] Chenglong Bao, Yi Wu, Haibin Ling, and Hui Ji, “Real
time robust l1 tracker using accelerated proximal gradi-
ent approach,” in Computer Vision and Pattern Recog-
nition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 1830–1837.

[16] João F Henriques, Rui Caseiro, Pedro Martins, and
Jorge Batista, “Exploiting the circulant structure of
tracking-by-detection with kernels,” in European con-
ference on computer vision. Springer, 2012, pp. 702–
715.

[17] Amit Adam, Ehud Rivlin, and Ilan Shimshoni, “Robust
fragments-based tracking using the integral histogram,”
in 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06). IEEE,
2006, vol. 1, pp. 798–805.

[18] João F Henriques, Rui Caseiro, Pedro Martins, and
Jorge Batista, “High-speed tracking with kernelized cor-
relation filters,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 37, no. 3, pp. 583–596,
2015.

[19] Yang Li, Jianke Zhu, and Steven C.H. Hoi, “Reliable
patch trackers: Robust visual tracking by exploiting re-
liable patches,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

[20] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang, “Online
object tracking: A benchmark,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2013, pp. 2411–2418.

1921


