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ABSTRACT
Detecting spot-like objects of different sizes in images is
needed in many applications. Multiple image scales must
then be handled for reliable spot segmentation. We define
an original criterion based on the a contrario approach and
the LoG scale-space framework to automatically select the
meaningful scales. We then design a coarse-to-fine multi-
scale spot segmentation scheme involving a locally adaptive
thresholding across scales, to come up with the final map of
segmented spots. We report experimental results on simu-
lated and real images of different types, and we demonstrate
that our method outperforms other existing methods.

Index Terms— Multi-scale spot detection, automatic
scale selection, a contrario approach, object segmentation

1. INTRODUCTION

In many cases, image content may consist of a collection
of elements, such as cars in traffic monitoring, boats on the
ocean in remote sensing, stars in astronomy, animals in ob-
servation of natural scenes, cells and subcellular elements in
microscopy imaging, to name a few. If they are small enough
or seen from a distance, they usually appear as similar spots of
a more or less regular shape. Thus, detecting spots in images
is a common prerequesite in many applications. In order to
countervail noise resulting from the image acquisition stage
or the presence of spurious elements, selecting the right im-
age scale is needed to correctly detect spots of interest. For
a given scale, a spot detection framework can be divided in
three sub-steps : first, image preprocessing to smooth out
noise; second, signal enhancement to highlight spots to de-
tect; third, spot detection by thresholding; the two first ones
being often merged in a single operator.

However, elements of interest may not all correspond to
the same image scale, if the collection includes subgroups of
different sizes or if perspective effects occur. Then, the need
is not merely the selection of the optimal scale, but of all the
meaningful scales. We will deal with the problem of multi-
scale spot detection with an automated selection of the mean-
ingful scales. Our primary interest is to detect particles in
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microscopy images, but our method can be applied to other
types of images as well. Our method adopts the a contrario
approach for multi-scale selection, and performs locally adap-
tive thresholding across scales for spot segmentation.

The remainder of the paper will be organized as follows.
In Section 2, we will provide a brief review of spot detection
methods. Section 3 will be devoted to the presentation of our
multi-scale spot detection method. In Section 4, we will re-
port experimental results on simulated data with an objective
comparative evaluation, and on real images of various kinds.
Finally, Section 5 will contain concluding remarks.

2. RELATED WORK

Many efforts have been made towards automatic spot detec-
tion in images. More detailed information on existing meth-
ods along with experimental comparative evaluation of sev-
eral spot detection methods can be found in [1, 2, 3]. Methods
can be divided in single-scale and multi-scale approaches.

Single-scale methods [4, 5, 6] extract spots from an im-
age, corresponding to one given size. The scale parameter
is usually predefined. In [6] and [7], a mixture of Gaussian
models is used to detect overlapping spots, while approaches
based on the top-hat scheme are used in [8] and [9]. Meth-
ods based on h-dome [10, 11, 12] can deal with close parti-
cles by detecting domes or local intensity maxima. In [5], a
single-scale spot-enhancing filter (SEF) is presented, where
the Laplacian of Gaussian (LoG) filter is used to detect spots
in fluorescence microscopy images. The LoG filter enhances
structures of a determined size, corresponding to the variance
of the Gaussian filter involved, while smoothing the image,
and removing (to a certain extent) background structures.

However, the standard deviation of the Gaussian filter
within the LoG transform needs to be adapted to the size of
the particles to detect. We introduced a statistical criterion in
[3] to automatically select one single optimal scale, based on
the scale-space paradigm of [13] and a discrete version of the
Gaussian filter. The selected scale is the one corresponding
to the maximum number of blobs normalized by the num-
ber of blobs in a pure noise image at the same scale, where
blobs designate local extrema in the scale-space domain.The
resulting spot detection method was proven to outperform
existing methods on several benchmarks. It was applied to
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vesicle segmentation in total internal reflection fluorescence
microscopy (TIRFM) images [3].

Multiscale methods are able to extract spots of different
sizes from an image. In [14] a general Gaussian scale-space
framework was investigated to select multiple scales for blob
and junction detection. [15] locally selects the most salient
scale for region contour points to drive the PDE-based im-
age segmentation. In [16] a non-linear scale-space represen-
tation employing a differential morphological decomposition,
is used for multiscale corner detection. In [17], an isotropic
undecimated wavelet method is designed to detect biological
particles of different sizes, exploiting the wavelet multiscale
product introduced in [18]. In [19], a generalized Laplacian
of Gaussian allows to detect circular and elongated structures,
while estimating their dimensions and orientations. In [20], a
multiscale spot detection scheme, exploiting the LoG trans-
form, is developed and used together with a multi-frame as-
sociation algorithm to track virus particles. Multi-scale LoG
scheme was also adopted for pulmonary nodule detection in
[21], with 150 predefined LoG kernels of incrementally in-
creasing sizes.

We propose a new multi-scale spot detection method
based on the LoG transform, able to automatically select the
meaningful scales in the processed image. Moreover, we will
design a locally adaptive thresholding process across scales
to come up with the final map of segmented spots.

3. MULTISCALE SPOT DETECTION

In this section, we present our multiscale spot detection
method. It is divided in two main stages: the multi-scale
selection step, where we recover the meaningful scales cor-
responding to the significant objects in the image, and the
detection step, where we exploit the selected scales to com-
pose the binary map of segmented spots of different sizes.
For both stages, we will rely on the LoG transform as we did
in [3]. However, in [3], we dealt with a single scale paradigm.
To select multiple scales, we introduce a new criterion based
on the a contrario approach. The detection step is also modi-
fied to combine the LoG output obtained at different scales.

3.1. A contrario selection of multiple scales

We rely on the a contrario approach [22], to select the mean-
ingful scales. Briefly speaking, the a contrario approach can
be viewed as a hypotheses test, where only the null hypothe-
sis H0 needs to be specified, which is called the background
model accounting for randomness. A structured element is
likely to appear under H0 only with a very low probability.
This approach was successful for several pattern detection
problems. It was also investigated for motion detection [23].
To our knowledge, it is applied to scale selection for the first
time. In [24], it was explored to predict the detectability of
spots in textured images.

Let us consider an image f over the domain Ω, containing

spots of various sizes and corrupted by Gaussian noise. The
issue is how to automatically select the meaningful scales.
We start from a set of scales S ⊂ R∗

+, as in [3], defined by
S = {s0rn, n ∈ [0, ν]}, where s0 is taken equal to 1, r is
close to 1 (e.g., 1.2), and ν depends on the range of possible
scales in the given application. Given S, we build a scale-
space representation of the image following [13], with a LoG
transform based on a discrete analogous of the Gaussian fil-
ter to handle arbitrary scale values (let us remind that scale
corresponds to the Gaussian variance, and spot radius to the
standard deviation). We come up with a 3-dimension map
Hf , where each slice corresponds to the LoG filtered image
for a given scale s ∈ S:

∀(p, s) ∈ Ω× S, Hf (p, s) = (Ks ∗ f)(p, s), (1)
whereKs denotes the LoG kernel of variance s . The response
of a bright spot of size ς and located at point p, to the multi-
scale LoG transform should be minimum at p ∈ Ω and scale
s ∈ S , where s is the closest value to ς2. Such a scale-space
minimum is named blob, following [13].

To detect spots as reliably as possible, we need to find
the scales at which LoG best enhances them, while reducing
noise. To do so, we elaborate a probability measure to account
for the ability of the LoG to distinguish noise and spots. We
have no prior information on the spots, but we suppose that
the noise is Gaussian. Thus, we construct a model represent-
ing the situation where no spots are present (H0 hypothesis),
that is, an image containing only uncorrelated Gaussan noise.
Then, we denote by Ns the random variable representing the
number of blobs at scale s in such a random image.

We can assume that the probability for any point p ∈ Ω to
be a blob at scale s follows a binominal distribution of mean
µs . Then, the variable Ns of the number of blobs at scale s
is Poisson-distributed of mean λs = µs|Ω|, where |.| denotes
the cardinality of the set. Let G = {gi, 1 ≤ i ≤ M} be a
set of M such random images, and let ns(gi) be the com-
puted number of blobs in gi at scale s . We showed in [3] that
ns(gi) is unchanged when adding any constant to gi or multi-
plying gi by any positive number. Therefore, we merely con-
sider a normalized Gaussian noise, ∀p ∈ Ω, gi(p) ∼ N (0, 1).
We empirically estimate λs as the average number of blobs at
scale s in the set G of M noise image samples:

λ̂s =
1

M

M∑
i=1

ns(gi). (2)

Meaningful scales in image f will be those for which the
number of blobs in Hf is the least likely to be high under
the ”no-spot” H0 hypothesis, hence, the name of a contrario
approach (it cannot happen “by chance”). To do so, we count
the number ns(f) of blobs inHf at every scale s ∈ S, and we
evaluate the probability that so many blobs may exist under
the ”no-spot” H0 hypothesis. We refer to it as the probability
of false alarm PFA(s, f), which can be estimated as:
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PFA(s, f) = P(Ns ≥ ns(f))

= 1− Φλs (ns(f)) ≈ 1− Φλ̂s
(ns(f)) (3)

where Φλ̂s
is the cumulative density function (CDF) of the

Poisson distribution of mean λ̂s :

Φλ̂s
= e−λ̂s

ns(f)∑
i=0

λ̂is
i!
. (4)

We come up with a set of probabilities {PFA(s, f), s ∈ S},
and we can simply select the subset of ε-meaningful scales
S? ⊂ S as given by:

S? = {s ∈ S|PFA(s, f) < ε}. (5)
Let denote |S?| = η. In practice, since we look for very low
PFA(s, f), we arbitrarily fix ε to 0.1. Alternatively, in case
we know a priori the number η of relevant spot sizes, we can
select the scales corresponding to the η lowest PFAs.

3.2. Spot detection at a given scale

Once the set of scales S? is determined, we can build a spot
detection binary map ∆s : Ω→ {0, 1} for each scale s ∈ S?.
We will again exploit the LoG transform, since it smooths
noise while enhancing spots. This will be achieved by thresh-
olding the lowest (resp. highest) values of the corresponding
LoG map Hf (·, s), s ∈ S?, if spots are bright (resp. dark)
in the image. We will automatically inferred the threshold
value τs which will be adapted for every point p ∈ Ω from
local statistics of the LoG map Hf (·, s) in the vicinity of p.
It can be assumed that the local background in the LoG map
is smooth and corrupted by a white Gaussian noise [3]. For
every point p ∈ Ω, we estimate the local mean µs(p) and
variance σ2

s(p) over a Gaussian window Ws(p). The likeli-
hood Ls of belonging to the background of the LoG map in
the vicinity of p at scale s ∈ S? is then defined by:

L(p) = ϕ

(
Hf (p, s)− µs(p)

σs(p)

)
, (6)

where ϕ denotes the density function of the standard normal
distribution. Given a p-value α, the local threshold value is
then inferred as τs(p) = σs(p)ϕ

−1(α) + µs(p). A point p is
detected as belonging to a (bright) spot if Hf (p, s) < τs(p).
α can be independently fixed for the experiment according to
the reliability which is required or expected, while threshold-
ing automatically adapts to local image statistics.

3.3. Multiscale spot detection

When detecting spots of different sizes, it is important to cor-
rectly combine results of spot segmentation obtained at differ-
ent scales. Similarily to [20], we adopt a coarse-to-fine nested
approach. The scheme is defined as follows. Let us consider
the input image f and the set S? of the η meaningful scales
selected at the first stage of our method, S? = {sl, l = 1, η},
ranked in decreasing order. At each scale sl ∈ S?, we com-
pute the filtered image ψ(p, sl) given by:

ψ(p, sl) = Hf (p, sl)∆sl−1
(p) (7)

where ∆sl−1
(p) is the spot detection binary map computed at

scale sl−1. For l = 1, corresponding to the coarsest scale or
level, by definition we take ∆s0(p) = 1,∀p ∈ Ω. The spot
detection binary map at a given scale operates as a mask for
spot detection at the subsequent finer scale. Indeed, this way,
spurious spot detections are avoided at coarser scales, while
at finer scales spots in close proximity can be further resolved.
The spot segmentation map will be given by ∆sη . Thus, we
compute the multi-scale spot detection map for several scales
automatically selected on the processed image f , and there is
just one single user-friendly parameter to set for the segmen-
tation step, that is, the p-value α.

In contrast, the max, min and number of scales (for a reg-
ular scale sampling) have to be predefined by the user in [20],
along with parameters in the thresholding and masking oper-
ations. This is also the case for [17], where the user has to
set the threshold, max and min scales and the false discovery
rate. In addition, we have implemented a variant, denoted AS-
MSSEF, combining the coarse-to-fine spot detection frame-
work of [20] with our automated scale selection.

4. EXPERIMENTAL RESULTS

We have evaluated the performance of our method on both
synthetic and real images. We set the p-value to α = 0.001
in all the experiments. We have compared our multiscale
method with other multiscale methods: MSSEF [20], MS-
VST [17], and the variant AS-MSSEF.

4.1. Simulated data

We generated two sets of 20 simulated images each. 150
Gaussian spots, of three equally distributed sizes ς (resp. for
the two sets {

√
2.6, 2,

√
6}, and {

√
3,
√

5,
√

7}), were ran-
domly sampled in each simulated image over a uniform zero-
valued background. We added Gaussian noise to the image, of
mean 2 and standard deviation 0.6, knowing that the spot peak
intensity value is 10. The objective evaluation is divided in
three steps: multiple scale selection, spot detection (spot cen-
ter location), and spot segmentation. For the two last steps,
we compare our method to the three other methods.

To assess multi-scale selection, we compute precision and
recall scores. 100% recall means that all the true scales are
correctly selected. 100% precision means that all the selected
scales correspond to true scales. Since we start with a set
of 18 predefined scales S = {1, 1.2, 1.44, ..., 18.49, 22.19},
a true scale is stated as recovered if the scale the closest to
it is selected among the tested ones. In the first experiment,
precision amounts to 100% and recall to 90%. In the second
experiment, we get precision of 95% and recall of 95%.

To evaluate spot detection, we compute F-measure scores
on the binary maps supplied by the tested methods. Follow-
ing [11], spot detection is stated as correct if the distance be-
tween the detected spot center and its corresponding ground
truth center is less than four pixels. We report statistics on re-
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(a) Input image (b) Our method (c) Variant AS-MSSEF (d) MSSEF [20] (e) MS-VST [17]

(a) Input image (b) Our method (c) Variant AS-MSSEF (d) MSSEF [20] (e) MS-VST [17]

Fig. 1: Spots segmented (in black) by the four compared methods on a real TIRFM cell image (top row), and on a real astronomy
image (bottom row). Images should be viewed (and zoomed in) in the pdf file for better visualization.

Our method AS-MSSEF MSSEF MS-VST
F-m. Jacc. F-m. Jacc. F-m. Jacc. F-m. Jacc.

Mean 0.982 0.724 0.978 0.664 0.937 0.645 0.961 0.357
Std 0.008 0.052 0.009 0.068 0.037 0.048 0.015 0.019
Min 0.966 0.641 0.955 0.565 0.866 0.589 0.926 0.331
Max 0.995 0.790 0.995 0.745 0.989 0.708 0.989 0.386

Table 1: Statistics over the 40 simulated images of the two
experiments on the F-measures and Jaccard index, obtained
with the four compared methods

sults of the two experiments in Table 1. Let us point out that
our method supplied the best F-measures for all the fourty im-
ages. For a few images, the variant AS-MSSEF yielded the
same performance as our method, indicating that our multi-
scale selection has a strong impact on the whole process.

Regarding spot segmentation assessment, we compute the
overlap between the segmented spots in the binary map deliv-
ered by each method and the ground truth using the Jaccard
index, defined as J(A,B) = |A∩B|/|A∪B|. As reported in
Table 1, our method yields the best scores, meaning that our
method better recovers size and shape of spots.

(a) (b)

(c) (d)
Fig. 2: Spots segmented (in black) by our method on a SAR
satellite image including ships (top row) and an aerial color
image depicting a sheep herd in a meadow (bottom row).

4.2. Real images

We have also carried out experiments on a set of diverse real
images. Since there is no ground truth available, we rely only
on visual assessment of spot segmentation, when compar-
ing our method to others. For lack of space, we report two
comparative experiments: on a total internal reflection fluo-
rescence microscopy (TIRFM) cell image (by courtesy of In-
stitut Curie) and on an astronomical image. Fig.1 contains the
TIRFM input image (resp. astronomy image) and the maps of
segmented spots obtained with our method, the variant AS-
MSSEF, MSSEF and MS-VST. Our method selects 5 scales,
S? = {1.728, 2.073, 2.488, 3.583, 6.191}, in the first real im-
age (resp. 5 scales, S? = {1.440, 1.728, 5.159, 8.916, 15.407},
in the second one) as representative scales of the objects
present in the image. Clearly, our method outperforms the
three others, since we are closer to the right amount of objects
to detect and are able to more accurately segment them. We
also applied our single-scale method [3] to these images, and
a subset of spots were missed. We report additional results
in Fig.2, showing that our method can handle very different
types of images with the same accuracy. It takes 1.25s to
segment spots in a 500×500 image on a laptop with 2,8 GHz
Intel Core i7 processor and 16 GB memory.

5. CONCLUSION

We have defined an original coarse-to-fine multi-scale spot
detection method where we select multiple scales according
to a criterion based on the a contrario approach. Experiments
on simulated images with objective evaluation, and on real
images with visual assessment, demonstrated that our method
outperforms existing methods. Without introducing any criti-
cal parameter setting, our method is able to automatically se-
lect the relevant scales corresponding to spot-like objects of
different sizes in the image, and to correctly segment spots,
even in close proximity.
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