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ABSTRACT

In this paper, we address the problem of detecting and seg-
menting partial image blur from a single input image. In-
stead of assuming particular image priors or requiring addi-
tional user annotation, we propose a novel learning frame-
work which jointly solves the tasks of blur kernel estimation
and image blur segmentation, so that partial image blur can
be automatically separated from the remaining parts of the in-
put image. By alternating between the two learning tasks, we
show that our proposed method would achieve promising de-
tection and segmentation performance, which would benefit
further processing or analysis tasks of interest. We also verify
that, via both qualitative and quantitative evaluation, our ap-
proach would perform favorably against state-of-the-art blur
detection or segmentation works.

Index Terms— Blur detection, image segmentation

1. INTRODUCTION

Image blur is a common issue in photography which not only
affects the quality of the photo but also reduces user satis-
faction. Even if an image is uniformly blurred (e.g., due to
camera motion), direct estimation of the blur kernel for im-
age deblurring is an ill-posed problem. This is because that,
one would require the estimation of the blur kernel and the
associated latent image simultaneously. To tackle this prob-
lem, prior knowledge on the image properties is typically re-
quired (e.g., natural image gradients [1], local color statistics
[2], dark channel [3], and blur kernel sparsity [4, 5]). Re-
cently, deep learning techniques [6] have also been proposed
for solving the above problem.

Unfortunately, image blur might result from both cam-
era and moving objects of interest. In other words, multiple
blurred regions can be presented in an image. Moreover, cam-
era motion would also result in out-of-plane rotation which
also blurs the input image. Thus, how to properly detect each
blur region and to distinguish between the corresponding im-
age regions would be a challenging and practical task.

Detecting multiple blurred regions (including partial blur)
from a single image has been studied by researchers in the

Fig. 1: Examples of partial image blur presented in an image.
Note that the images are adopted from [7].

fields of computer vision and image processing. For exam-
ple, some require user interaction for producing high-quality
alpha mattes for estimation (e.g., foreground and background
trimap [8, 9], moving path [10]), while others observe local
cues for blur detection and segmentation (e.g., 1-D box fil-
ter [11, 12], sparse representation [13]). Some further solve
this task by learning the Bayesian models via conforming
multi-layer image representation with different smoothness
constraints (e.g., Potts prior [14], similarity matrix [15], soft
segmentation [16]). Nevertheless, most existing approaches
typically require additional information like user interaction
or prior knowledge for achieving satisfactory performance.

In this paper, we focus on detecting and segmenting par-
tial blurred regions from a single input image. In our work,
we assume that there exists a region of obvious image blur
(caused by a single yet unknown uniform kernel) in the input
image, while the remaining regions are blur free. For sim-
plicity, we do not consider image blur due to out-of-focus and
out-of-plane rotation, which are not within the scope of dis-
cussions in this paper. To address the above problem, we pro-
pose to solve the joint task of blur kernel estimation and image
blur segmentation. Via alternating between the two tasks, re-
fined blur kernels and improved blur detection/segmentation
can be simultaneously achieved. Finally, a standard Markov
Random Field model is applied to refine the final detection
and segmentation output. The main contributions of our work
are highlighted below:

• We aim at solving partial image blur from a single in-
put image, without the need of user interaction or prior
knowledge/assumption on the type of blur kernel.
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• Based on the framework of maximum a posteriori
(MAP), we propose to solve the joint task of blur ker-
nel estimation and image blur segmentation, which
is shown to benefit partial image blur detection and
segmentation.

• Via alternative optimization between the above two
tasks, the partial image blur region can be automat-
ically detected and extracted, which can be further
refined by MRF for producing the final output.

2. OUR PROPOSED METHOD

2.1. Problem Formulation

When an image L is blurred by a single kernel K, the blurred
output image I can be formulated as: I = K ⊗ L, where ⊗
denotes the convolution operation. And, due to both latent
image and the blur kernel are unknown, direct estimation of
them is an ill-posed problem.

When multiple partial blur can be expected, one can ex-
tend the equation above as the following form:

I =

N∑
t=1

Ki ⊗ (Mi � L) , (1)

in which M = {M1,M2, ...,MN} indicatesN disjoint masks
separating each blurred image segment, each associated with
a blur kernel Ki in K = {K1,K2, ...,KN} (i is the segment
index). We have� as element-wise multiplication. It is worth
repeating that, in this paper, we assume that there exists a
single blur region in the input image which is caused by a
single uniform kernel. In other words, we have N = 2 while
both M and K need to be automatically determined.

As highlighted in Section 1, we propose to solve a joint
optimization task of blur kernel estimation and image blur
segmentation, so that partial image blur can be automatically
detected and segmented from the input image. The frame-
work of our proposed method is illustrated in Figure 2, which
consists of two major components of blur kernel estimation
and image blur segmentation, followed by a MRF-based
post-processing stage for producing the final output. As de-
tailed and verified later, alternation between the two proposed
components would introduce satisfactory ability in identi-
fying and extracting the partial blur region from the input
image, while no prior knowledge of the blur kernel nor user
interaction would be needed during the entire process.

2.2. Partial Image Blur Detection and Segmentation

2.2.1. A Brief Review of MAP for Image Deblurring

Since solving the above image deblurring is an ill-posed prob-
lem, priors like gradient sparsity of natural images [17] are

Fig. 2: A flowchart showing the procedures of our algorithm.

typically applied in a maximum a posteriori (MAP) frame-
work as a popular solution. Thus, one can approach the orig-
inal blur kernel estimation and image recovery tasks by solv-
ing the following minimization problem:

minimize
M,K,L

∣∣∣∣∣∣I− N∑
i=1

Ki ⊗ (Mi � L)
∣∣∣∣∣∣2
2
+

γ
∑

?={x,y}

||∇?L||11 + λ

N∑
i=1

||Ki||11,
(2)

where the first term represents the data fitting term, the second
term corresponds to image sparsity prior, and the last term is
for kernel normalization. Parameters γ and λ are the weight
and Lagrange multiplier, respectively.

We note that, optimization of (2) can be achieved by it-
eratively solving with each subproblem of determining M, K
and L, while each turns into an easier task and would be more
efficient to solve [18]. Such alternative optimization would
also provide advantages of dealing with image noise caused
by local textures over existing methods like [11], which focus
on estimating blur kernels for each image patch and choose to
perform image segmentation based on the associated kernels.

2.2.2. Blur Kernel Estimation

Instead of assuming that the blur kernel is known from a set of
predetermined kernel candidates, we advocate the joint learn-
ing of blur kernel and blur image segmentation for partial
image blur detection. As depicted in Figure 2, we advance
and alternate between two major components for solving this
challenging task.

We now detail the first task of blur kernel estimation from
an input image with partial blur. For estimating the blur ker-
nels K (which also implies the recovery of the latent image
L), we assume that the set of disjoint segmentation masks
M is given and fixed. In other words, the sub-task to be ad-
dressed at this stage is to estimate the kernel Ki for each im-
age segment i. Since existing solutions exist for solving such
a blur kernel estimation task (and our goal is not to improve
its performance), we apply the method proposed in [18] for
iteratively deriving K and L given M. More specifically, the
technique of reweighted least squares (IRLS) is utilized for
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Fig. 3: From left to right: example image, two sets of im-
age edges identified by k-means clustering (shown in red and
blue), and the corresponding estimated blur kernels.

solving this task. Nevertheless, once the blur kernels K and
the resulting latent image L are obtained, we will use such de-
rived information for performing the following task of image
blur segmentation.

2.2.3. Image Blur Segmentation

Given K and L, the stage of image blur segmentation aims at
learning the segmentation mask M for separating the segment
of image blur and the remaining image regions with blur free.
To determine the binary mask of M, we start with an alpha-
matting like soft mask with each pixel value between [0, 1].
Thus, we solve the first term in (2)), which is a convex opti-
mization problem with respective to M (given fixed K and L).
Once the soft mask is derived, a simple threshold of 0.5 can
be applied to convert it into the binary segmentation mask.

We note that, when solving the above segmentation task,
we do not assume any particular image priors for extracting
different image segments from an image with partial blur.
Thus, the derived segmentation mask might not be smooth
along the the segment boundaries. Therefore, after the alter-
native optimization between blur kernel estimation and im-
age blur segmentation is complete, we employ an additional
MRF-based post processing step to produce the final detec-
tion/segmentation output.

2.2.4. Initialization and Refinement

To perform the learning process in Figure 2 for estimating the
image partial blur and its associated image regions, we start
from the stage of blur kernel estimation with kernel initial-
ization. With an input image I with partial blur, since image
blur is typically observed in image regions with long edges,
we focus on pixels along strong edges and perform clustering
to distinguish the edges associated with blur and non-blur re-
gions. Visualization of the observed strong edges is shown in
Figure 3.

As for producing the final detection output from the de-
rived mask M, we need to preserve the segment boundary
based on the latent image I since such information might not
be sufficiently recovered during the stage of joint kernel esti-
mation and blur image segmentation.

To better estimate the detection output from different

(a) (b) (c) (d)

Fig. 4: An example of MRF refinement. (a) Input image, (b)
segmentation ground-truth, (c) estimated mask M; (d) refine-
ment output.

types of blur kernels, we utilize an additional set of 20 natu-
ral images collected over the Internet, which are blurred by
the estimated kernels K = {K1,K2, ...,KN} (N = 2 in
our work). For each patch with the associated kernel, it is
described by local binary pattern (LBP) [19], followed by
gradient boosting decision trees [20] as the classifiers. Such
classifiers will be applied to recognize each overlapping patch
in the estimated latent image L, so that the average output
would be processed by MRF as the final detection map (see
Figure 4 for example). Note that, for refinement purposes,
the data term of the MRF determines the mask label for each
segment, while the smoothness terms measures the gradient
magnitude between adjacent image segments.

3. EXPERIMENTS

3.1. Datasets and Settings

To evaluate the performance of our proposed method, we ap-
ply the dataset of [7] and consider state-of-the-art approaches
of blur segmentation [11] and detection [7, 21, 22, 11] for
comparisons. To detect the image edges as noted in Section
2.2.4, we utilize [23] for extracting image structural edges
with a ridge detector, followed by thresholding the resulting
stroke length which is 4 times larger the kernel size. For the
refinement stage of our method, we follow [20] and use LBP
features [19] to learn the classifiers. As for the MRF model,
we apply graph cuts with multi-label energy minimization
(GCMEX) [24] for optimization.

3.2. Evaluation

We first evaluate the performance of partial blur detection.
We compare to the methods noted above, and show the ex-
ample results in Figure 4. To further assess the ability of our
method for partial image blur segmentation, we compare the
segmentation results in Figure 6 (note that the segmentation
results are produced using the code of [11], which is publicly
available). We note that, compared to some recent approaches
which tend to result in false positive detection results due to
poor kernel estimation, our integration of blur kernel estima-
tion and blur segmentation would suppress noisy estimation
from either task.
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Fig. 5: Performance comparisons of partial image blur detection. Images from left to right: input, ground truth, detection
outputs of [11], [21], [7], [13], [22], and ours, respectively.

Fig. 6: Comparisons of segmenting partial image blur. From
left to right: input, ground truth, outputs of [11], and ours.

In addition to qualitative comparisons, we perform ad-
ditional quantitative evaluation, and plot the accuracy and
precision-recall curves in Figure 7 for the completeness of
comparisons. In this figure, we particularly consider the per-
formances of [21], [7], [13], and [22], and we observe that
our method consistently performed favorably against these
state-of-the-art approaches. Thus, the effectiveness of our
approach can be successfully verified.

Fig. 7: Comparisons of accumulated accuracy and precision-
recall curves for partial image blur detection.

4. CONCLUSION

We approached the problem of extracting partial image blur
from a single input image by solving the joint tasks of blur
kernel estimation and image blur segmentation. The proposed
learning framework uniquely integrates the above two funda-
mental image processing tasks. By utilizing alternative op-
timization which retrieves and utilizes the information pro-
duced by each task, we can automatically identify the par-
tial image blur presented in the input. Followed by standard
MRF for refinement purposes, the produced image mask can
be viewed as an effective detection and segmentation output,
which would be preferable over recent approaches which re-
quire additional image assumption or user feedback.
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