
ADAPTIVE SUPERPIXEL SEGMENTATION AGGREGATING LOCAL CONTOUR AND
TEXTURE FEATURES

Xiaolin Xiao, Yue-Jiao Gong, Yicong Zhou

Department of Computer and Information Science, University of Macau
shellyxiaolin@gmail.com, gongyuejiao@gmail.com, yicongzhou@umac.mo

ABSTRACT

Superpixel segmentation targets at grouping pixels in an im-
age into atomic regions that align well with the natural object
boundaries. In this paper, we propose a novel superpixel seg-
mentation method based on an iterative and adaptive cluster-
ing algorithm that embraces color, contour, texture, and spa-
tial features together. The algorithm adjusts the weights of
different features automatically in a content-aware way, so
as to fit the requirements of various image instances. More
specifically, in each iteration, the weights in the aggregation
function are adjusted according to the discriminabilities of
features in the current working scenario. This way, the al-
gorithm not only possesses improved robustness but also re-
lieves the burden of setting the parameters manually. Experi-
mental verification shows that the algorithm outperforms ex-
isting peer algorithms in terms of commonly used evaluation
metrics, while using a low computational cost.

Index Terms— Superpixel, adaption, contour, texture

1. INTRODUCTION

Superpixel segmentation produces atomic regions of pixels
(namely, the superpixels) that are consistent with human
perception. Unlike the traditional rigid pixel representation
of images, superpixels provide visually meaningful entities,
which can further be utilized as inputs for mid- or high-level
computer vision tasks. The prominent advantage of using su-
perpixels instead of pixels is the reduction in computational
cost for subsequent processing.

Existing superpixel algorithms can be generally classified
into the following two categories. The first one is the graph-
cut-based methods [1–10], which consider the image as a
graph containing vertices and edges. Each vertex corresponds
to a pixel in the image, while edges are defined among the ad-
jacent vertices. Starting with an image as a graph, the image
is then partitioned into a few disjoint sub-graphs (superpix-
els) by minimizing the cut on edges. The second category in-

This work was supported in part by the Macau Science and Technology
Development Fund under Grant FDCT/016/2015/A1 and by the Research
Committee at University of Macau under Grants MYRG2014-00003-FST
and MYRG2016-00123-FST.

Fig. 1. Region that is hard to cluster merely based on color.

cludes the gradient-based methods [11–18], where pixels are
clustered along the direction that the gradients change most
quickly in each iteration, and finally they are grouped into
superpixels when the stopping criterion is achieved.

According to different requirements in diverse applica-
tion scenarios, the design principles of existing superpixel
algorithms vary, emphasizing on better boundary adherence
[10, 17] or superpixel regularity [15], etc. To the best of our
knowledge, none of the existing superpixel algorithms has
consistently good performance in handling different types of
images, since the parameters and operations in these algo-
rithms are fixed for all input images. To solve this problem,
we proposed an adaptive clustering-based superpixel segmen-
tation algorithm (ACS).

Our motivation of designing ACS comes from the follow-
ing observations: (1) the merely use of color difference is
inadequate to produce locally meaningful and compact enti-
ties, especially in low contrast regions (see Fig. 1); (2) natural
images vary significantly in their contents, so that different
features (color, sptial, contour, texture, etc.) have different
discriminabilities. For example, untextured images can be
easily segmented by emphasizing the contour feature, while
the textured images should rely more on the texture feature.

Compared with previous works, the novelties of ACS lie
in: (1) perception consistent: we adopt a color difference
measure based on a more perception consistent standard; (2)
content adaptability: the aggregating weights of features are
automatically adapted according to their discriminabilities on
different images; and (3) simplicity and efficiency: it is sim-
ple and intuitive to add new features on existing superpixel
algorithms, but it is a nontrivial work (always tedious and
time-consuming) to set reasonable weights. ACS relieves the
burden since the weights are automatically set.

1902978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

Fig. 2. Flow chart of the proposed ACS algorithm.

2. ADAPTIVE CLUSTERING-BASED SUPERPIXEL
SEGMENTATION (ACS)

The framework of ACS is illustrated in Fig. 2. Generally
speaking, ACS is based on a simplified linear clustering that
incorporates color, spatial, contour and texture features into
an adaptive distance measure. In each iteration, ACS can ad-
just the weights of different features regarding to their dis-
criminabilities. Besides, we use the post-processing method
in [17] to get the final segmentation to guarantee the connec-
tivities within superpixels.

2.1. The features and distance measure

CIELCH is a color space specified by the International
Commission on Illumination(CIE). Many start-of-the-art su-
perpixel algorithms [16, 17] measure the color difference in
CIELAB space. However, since the CIELAB color space
is not completely uniform, especially in some saturated re-
gions, we propose to represent each pixel in the CIELCH
color space, where L, C, and H represent lightness, chroma,
and hue, respectively. When converting the color represen-
tation from a CIELAB vector [l, a, b]T to a CIELCH vector
[l, c, h]T , the lightness stays the same, while c and h are the
polar coordinates of a and b.

The corresponding color difference dc is calculated using
the CIE94 measure:

dc =

√
(

∆l

klsl
)2 + (

∆c

kcsc
)2 + (

∆h

khsh
)2, (1)

where ∆l, ∆c, and ∆h represent the differences of l, c, and
h between two pixels, kl, sl, kc, and kh are constants, while
sc and sh can be computed regarding to the compared pixel
values.

Spatial distance. The spatial distance ds is calculated
using the normalized Euclidean distance between pixel coor-
dinates.

Image gradient measures the directional intensity changes
in an image, and its magnitude is achieved by the square root
of the sum of the squared directional intensity changes. In
ACS, we represent the gradient magnitude by g, and calculate
it in l domain since human eyes are very sensitive to lightness
changes. A threshold is adopted to remove the side effect of
fake contours. The gradient difference is denoted as dg .

Weber local descriptor [19] is designed to extract the
local salient patterns in an image. We exploit the differential
excitation part of WLD which is denoted as u. The feature is
computed as the ratio over two terms: the relative lightness
differences of a current pixel against its neighbors and the
lightness of the current pixel. Further, an arctan mapping is
used to prevent u from changing sharply as the input changes.
The texture difference is denoted as du.

Combining the above color, contour, texture and spa-
tial(denoted by x and y, represent the spatial position of
pixel) features into a seven dimension feature space, the pix-
els can be represented by p = [l, c, h, x, y, g, u]T , where the
distance D between pixels is measured as:

D =

√
wc (dc)

2
+ ws (ds)

2
+ wg (dg)

2
+ wu (du)

2
, (2)

where wc, ws, wg , and wu are weights for dc, ds, dg , and du,
respectively.

2.2. Iteratively adapt feature weights

In this section, we will present a measure to compare the dis-
criminabilities of different features [20] and then apply the
measure to automatically adapt the feature weights at each
iteration. The principle for feature weighting is to assign a
larger weight to a feature that has a smaller sum of the within
cluster distances, while assigning a smaller weight to a feature
that has a larger sum of the within cluster distances.

Firstly, the weights of all features are equally initialized
and used for pixel assignments. Then, in each iteration, we
measure the discriminability of each feature according to the

1903

Algorithm 1: Adaptive Clustering-based Superpixel Segmenta-
tion (ACS)

Input : Input image I , Superpixel number k.
Output: Label matrix L of the input image .

1 Represent each pixel p by [l, c, h, x, y, g, u]T ,
2 Select k initial centers on the image grid,
3 Initialize L(p) = 0 for each pixel,
4 Initialize distance d(p) = ∞ recording the difference between each

pixel and its nearest center,
5 Initialize wc,ws,wg and wu to 1,
6 repeat
7 for each center ci(i = 1, 2, ...k) do
8 for each pixel pq(q = 1, 2, ...n) located in the

neighborhood of ci do
9 Calculate the distance D between pq and ci,

10 if D < d(pq) then
11 d(pq) = D,
12 L(pq) = i,
13 end
14 end
15 end
16 Update the cluster centers to the mean vectors of each cluster,
17 for each feature j do
18 Calculate the within cluster variance SWj using Eq. (3),
19 end
20 for each feature j do
21 Calculate the weight of feature wj using Eq. (4),
22 end
23 until iteration is stopped;
24 Merge unconnected superpixels to their most similar neighbors.

sum of the within cluster distances SWj for feature j using
Eq. (3). Note that the larger SWj , the smaller discriminability
for feature j.

SWj =

k∑
i=1

n∑
q=1

ûpq,cidj(pq → ci), (3)

where the subscript j ∈ fset = {c, s, g, u}, representing the
feature set of color, spatial, contour, and texture; k is the num-
ber of superpixels; n stands for the number of pixels; ûpq,ci is
a binary variable to indicate whether a pixel pq(q = 1, 2, ...n)
belongs to a cluster center ci(i = 1, 2, ...k); and dj(pq → ci)
measures the distance of pixel pq to center ci on feature j.

The weight of feature j is then adjusted according to its
relative feature discriminabilities over all features as:

wj =
1∑

t∈fset

[
SWj

SWt

] 1
β−1

, (4)

where β is a constant set to 9 as recommended in [20]. Then,
the weights of different feature distances in the aggregating
function are updated accordingly in next iteration. The stop-
ping criterion is directly achieved by a fixed number of iter-
ation T, in our experiment, T = 10. The implementation of
ACS is summarized in Algorithm 1.

200 400 600 800 1000
0.75

0.8

0.85

0.9

0.95

Number of Superpixels

B
ou

nd
ar

y
R

ec
al

l

EOpt0
EOpt1
ERS
Lattice
LSC
Ncut
QS
SLIC
TP
ACS

200 400 600 800 1000

0.15

0.2

0.25

0.3

0.35

0.4

Number of Superpixels

U
nd

er
se

gm
en

ta
tio

n
E

rr
or

EOpt0
EOpt1
ERS
Lattice
LSC
Ncut
QS
SLIC
TP
ACS

(a) (b)

200 400 600 800 1000
0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

Number of Superpixels

A
ch

ie
va

bl
e

S
eg

m
en

ta
tio

n
A

cc
ur

ac
y

EOpt0
EOpt1
ERS
Lattice
LSC
Ncut
QS
SLIC
TP
ACS

200 400 600 800 1000
0

1

2

3

4

5

Number of Superpixels

R
un

tim
e

in
 S

ec
on

ds

EOpt0
EOpt1
ERS
Lattice
LSC
QS
SLIC
TP
ACS

(c) (d)

Fig. 3. Quantitative evaluation of different superpixel algo-
rithms. (a) Boundary Recall. (b) Undersegmentation Error.
(c) Achievable Segmentation Accuracy. (d) Runtime.

3. EXPERIMENTS

This section performs experiments to evaluate the proposed
ACS algorithm. We use the Berkeley segmentation database
[21], which consisting of 300 test images with human-labeled
groundtruth segments. We compare ACS with nine state-of-
the-art superpixel methods: Ncut [1], QS [14], Lattice [5],
TP [15], EOpt0 and EOpt1 [9], ERS [10], SLIC [16], and
LSC [17]. For ACS, the parameters wc, ws, wg and wu are
initialized and adapted in each iteration. All algorithms are
tested in the same computational environment.

3.1. Evaluation metrics

To better evaluate the proposed algorithm, we use the follow-
ing metrics used in [16, 17]: Boundary Recall (BR) mea-
sures boundary adherence by the percentage of natural bound-
aries recovered by superpixel boundaries. Undersegmenta-
tion Error (UE) measures the “unsegmented” superpixels
which overlaps with multiple natural objects. Achievable
Segmentation Accuracy (ASA) measures the maximum seg-
mentation performance that can be achieved using superpix-
els as atomic units. Runtime is used to evaluate algorithm
efficiency.

3.2. Quantitative comparisons

Fig. 3 illustrates the quantitative comparison results of all
superpixel algorithms in terms of different metrics. The num-
ber of superpixels k, in each test image, is set to 100, 200,
...1000, respectively. Considering the BR metric, as shown in
Fig. 3(a), we can observe that ACS gains the best BR, while
EOpt0 yields the worst boundary overlap. In Fig. 3(b), ACS

1904

Fig. 4. Visualization of different superpixel algorithms when
k=200.

gets the best UE when k is larger than 200, and it achieves
more significant improvements as k increases. Lattice gener-
ates superpixels by adding vertical or horizontal paths on the
image, thus, the superpixel boundaries are prone to winging
across the object boundaries. These results verify that Lattice
performs the worst in terms of UE. As shown in Fig. 3(c),
ACS and LSC achieve comparable performance using the
ASA metric, while the results of ACS are slightly better ex-
cept when k=300. As for the runtime illustrated in Fig. 3(d),
ACS is also competitive. It ranks as the third fastest super-
pixel algorithm, following SLIC and Lattice. Note that the
runtime of Ncut is not plotted in Fig. 3(d) because the value is
too large. In summary, ACS performs equally or better than
the other state-of-the-art algorithms in all metrics.

3.3. Visual results

We compare the visual results of ACS, Ncut, ERS, and LSC
when k= 200. Ncut is chosen because it is a representative
graph-based superpixel algorithm that has wide applications,
while ERS and LSC are the two best performed algorithms
in quantitative comparisons except ACS. It can be seen from
Fig. 4 that Ncut, LSC, and ACS generate superpixels with
regular shapes and sizes. However, Ncut performs unsatisfac-
torily in capturing the small and dark contours. LSC is unable
to capture boundaries when the color contrast is low, which
shows that merely using the color-based difference measure
is inadequate for superpixel segmentation. Besides, the su-

Fig. 5. Visualization of the maximum segmentation perfor-
mance using different superpixel algorithms when k=400.

perpixel boundaries of ERS wing across object boundaries
and are not appealing for visualization. The red ellipses on
Fig. 4 highlight the details where other algorithms are inade-
quate compared to ACS.

3.4. Investigation on the pre-processing performance

Superpixels provide visually meaningful entities at lower
computational cost for subsequent processing than pixels.
Thus, they are widely used in applications such as image
segmentation and image understanding. The baseline of ex-
ploiting superpixels lies in that the performance of subsequent
processing should not decrease too much using superpixels
instead of pixels. We apply an ideal classifier that assign
each superpixel to the groundtruth segment that the super-
pixel overlaps the most, and visualize the ideal segmentation
results in Fig. 5. We compare ACS with Ncut, ERS and LSC
when k=400. The results verify the advantage of using ACS
as a pre-processing step for other computer vision tasks. The
yellow ellipses on Fig. 4 highlight the details where other
algorithms are inadequate compared to ACS.

4. CONCLUSION

In this paper, we presented a content-aware algorithm for su-
perpixel segmentation. The algorithm is based on the adap-
tive combination of low-level features including color, con-
tour, texture and spatial position. The color distance is for-
mulated by using a measure that is consistent with human per-
ceived pixel difference. The contour and texture features are
derived from image gradient and WLD in lightness domain,
respectively. More importantly, we adjust weights of different
features in an iterative and adaptive way according to image
contents, resulting in a more accurate and reasonable distance
measure to discriminate pixels in natural images. Experimen-
tal results have demonstrated the advantages of our algorithm
over other state-of-the-art superpixel algorithms.

1905

5. REFERENCES

[1] Jianbo Shi and Jitendra Malik, “Normalized cuts and
image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 22, no. 8, pp. 888–905, 2000.

[2] Xiaofeng Ren and Jitendra Malik, “Learning a classifi-
cation model for segmentation,” in Proc. IEEE Int. Conf.
Comput. Vis. IEEE, 2003, pp. 10–17.

[3] Xuming He, Richard S Zemel, and Debajyoti Ray,
“Learning and incorporating top-down cues in image
segmentation,” in Proc. Eur. Conf. Comput. Vis., pp.
338–351. Springer, 2006.

[4] Anton van den Hengel, Anthony Dick, Thorsten
Thormählen, Ben Ward, and Philip HS Torr, “Video-
trace: rapid interactive scene modelling from video,”
ACM Trans. Graphics, vol. 26, no. 3, pp. 86, 2007.

[5] Andrew P Moore, JD Prince, Jonathan Warrell, Umar
Mohammed, and Graham Jones, “Superpixel lattices,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recog. IEEE,
2008, pp. 1–8.

[6] Yuri Boykov, Olga Veksler, and Ramin Zabih, “Fast
approximate energy minimization via graph cuts,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp.
1222–1239, 2001.

[7] Yuri Boykov and Vladimir Kolmogorov, “An experi-
mental comparison of min-cut/max-flow algorithms for
energy minimization in vision,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 26, no. 9, pp. 1124–1137, 2004.

[8] Vladimir Kolmogorov and Ramin Zabin, “What en-
ergy functions can be minimized via graph cuts?,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp.
147–159, 2004.

[9] Olga Veksler, Yuri Boykov, and Paria Mehrani, “Super-
pixels and supervoxels in an energy optimization frame-
work,” in Proc. Eur. Conf. Comput. Vis., pp. 211–224.
Springer, 2010.

[10] Ming-Yu Liu, Oncel Tuzel, Srikumar Ramalingam, and
Rama Chellappa, “Entropy rate superpixel segmenta-
tion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.
IEEE, 2011, pp. 2097–2104.

[11] Yizong Cheng, “Mean shift, mode seeking, and cluster-
ing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17,
no. 8, pp. 790–799, 1995.

[12] Dorin Comaniciu and Peter Meer, “Mean shift: A robust
approach toward feature space analysis,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619,
2002.

[13] Yaser Ajmal Sheikh, Erum Arif Khan, and Takeo
Kanade, “Mode-seeking by medoidshifts,” in Proc.
IEEE Int. Conf. Comput. Vis. IEEE, 2007, pp. 1–8.

[14] Andrea Vedaldi and Stefano Soatto, “Quick shift and
kernel methods for mode seeking,” in Proc. Eur. Conf.
Comput. Vis., pp. 705–718. Springer, 2008.

[15] Alex Levinshtein, Adrian Stere, Kiriakos N Kutulakos,
David J Fleet, Sven J Dickinson, and Kaleem Siddiqi,
“Turbopixels: Fast superpixels using geometric flows,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12,
pp. 2290–2297, 2009.

[16] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aure-
lien Lucchi, Pascal Fua, and Sabine Susstrunk, “Slic su-
perpixels compared to state-of-the-art superpixel meth-
ods,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34,
no. 11, pp. 2274–2282, 2012.

[17] Zhengqin Li and Jiansheng Chen, “Superpixel seg-
mentation using linear spectral clustering,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog. IEEE, 2015,
pp. 1356–1363.

[18] Yue-Jiao Gong, Yicong Zhou, and Xinglin Zhang, “A
superpixel segmentation algorithm based on differential
evolution,” in Multimedia and Expo (ICME), 2016 IEEE
International Conference on. IEEE, 2016, pp. 1–6.

[19] Jie Chen, Shiguang Shan, Chu He, Guoying Zhao, Matti
Pietikäinen, Xilin Chen, and Wen Gao, “Wld: A ro-
bust local image descriptor,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 9, pp. 1705–1720, 2010.

[20] Joshua Zhexue Huang, Michael K Ng, Hongqiang
Rong, and Zichen Li, “Automated variable weighting
in k-means type clustering,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 5, pp. 657–668, 2005.

[21] David Martin, Charless Fowlkes, Doron Tal, and Jiten-
dra Malik, “A database of human segmented natural im-
ages and its application to evaluating segmentation al-
gorithms and measuring ecological statistics,” in Proc.
IEEE Int. Conf. Comput. Vis. IEEE, 2001, vol. 2, pp.
416–423.

1906

