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ABSTRACT
Co-saliency detection aims at discovering the common and
salient objects in multiple images. It explores not only intra-
image but extra inter-image visual cues, and hence compen-
sates the shortages in single-image saliency detection. The
performance of co-saliency detection substantially relies on
the explored visual cues. However, the optimal cues typically
vary from region to region. To address this issue, we develop
an approach that detects co-salient objects by region-wise
saliency map fusion. Specifically, our approach takes intra-
image appearance, inter-image correspondence, and spatial
consistence into account, and accomplishes saliency detec-
tion with locally adaptive saliency map fusion via solving an
energy optimization problem over a graph. It is evaluated
on a benchmark dataset and compared to the state-of-the-art
methods. Promising results demonstrate its effectiveness and
superiority.

Index Terms— Co-saliency detection, graph-based opti-
mization, energy minimization, locally adaptive fusion

1. INTRODUCTION

Saliency detection attempts to unsupervisedly identify the
salient pixels in an image. It is an active and fundamen-
tal topic in image processing, since it can help automate
many applications such as image segmentation [1] and
video compression [2]. Despite the significant progress,
e.g. [3, 4, 5, 6, 7, 8, 9], the performance of single-image
saliency detection is still restricted by its unsupervised nature,
especially when with complex image content. Co-saliency
detection, e.g. [10, 11, 12], is introduced to address the diffi-
culties inherent in single-image saliency detection. It aims to
locate the common salient objects. The information used in
most approaches for co-saliency detection can be divided into
two categories, i.e. intra-image and inter-image evidences.
The former is extracted based on appearance contrast and
spatial cues in a single image. The latter is obtained by
detecting the correspondences between a group of images.

A single type of evidences in general is insufficient for
handling complex co-saliency detection problems. Most
modern approaches carry out co-saliency detection by fusing
multiple saliency maps. For instance, the approaches in [10,
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Fig. 1: Image co-saliency detection. (a) & (b) An image pair
and the ground truth. (c) ∼ (f) Saliency maps produced by
using (c) the intra-image evidence [9], (d) the inter-image ev-
idence [10], (e) the method in [13], and (f) our method.

11] adopt fixed-weight summation for map fusion, while the
one in [12] uses fixed-weight multiplication. Cao et al. [13]
instead proposed a self-adaptive framework where the weights
for map fusion are dynamically generated according to the
input images.

The aforementioned approaches [10, 11, 12, 13] fuse
saliency maps in a map-wise manner. Namely, a weight is
given for the whole-image saliency map. These approaches
neglect the phenomenon that the goodness of a saliency map
is often region-dependent. As an illustration, Fig. 1 shows
an image pair and the saliency maps generated by using
the intra-image evidence [9], the inter-image evidence [10],
the method of self-adaptive fusion [13], and our proposed
method. It can be observed that using a single type of ev-
idences doesn’t suffice for this case. While using only the
intra-image evidence [9] leads to the false alarm in the text
part of the second image, using only the inter-image evi-
dence [10] fails to detect a penguin in the first image. The
method [13] combines both types of evidences. It gives better
results, but it also inherits both the shortcomings of false
alarms and misses.

To tackle these challenges of co-saliency detection, we
propose an approach that can jointly consider both intra-
image and inter-image evidences, and carry out region-wise
saliency map fusion. As shown in Fig. 1f, our approach ef-
fectively alleviates the unfavorable effects of false alarms and
misses, and results in the saliency maps of higher quality.

2. RELATED WORK

The literature of saliency detection is extensive. Most of them
target at human eye fixation prediction [3, 4] or salient object
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detection [5, 6, 7, 8, 9]. Approaches to eye fixation predic-
tion are inspired by the primitive human visual system. For
example, Itti et al. [3] computed center-surround differences
across multi-scale image features for detecting saliency. De-
spite the novelty, this method poorly detects object borders.
On the contrary, Hou et al. [4] defined the saliency through
the residual on the log-frequency domain. Although their
method is computationally efficient, it mostly discovers ob-
ject boundaries rather than the whole salient regions. Both
methods [3, 4] involve image resizing process, which proba-
bly causes the loss of frequency content.

In the category of salient object detection, Achanta et al. [5]
devised a full resolution method by which more uniformly
highlighted salient regions as well as more precise object
boundaries can be obtained. However, their method neglected
the spatial layout of objects in images, so it tends to predict
background regions as salient. Perazzi et al. [7] improved
Achanta et al.’s model by further considering the appearance
contrast and the spatial distribution in saliency detection. In
addition to the low-level features, Shen and Wu [6] further
integrated higher level prior knowledge, such as the center or
semantic prior, into detecting salient objects. Yang et al. [8]
used the background priors inferred from object boundaries as
well as the foreground proposals to rank the saliency degrees
of superpixels. Following [8], Zhu et al. [9] proposed a more
robust method for background prior generation. Their method
coupled with other contrast cues achieves the state-of-the-art
performance in the single-image saliency detection.

Stemming from the unsupervised nature, the performance
of the aforementioned approaches to single-image saliency
detection is still restricted. Co-saliency detection is intro-
duced to further improve the performance. The shared visual
cues obtained across images facilitate foreground location and
background removal. For instance, Li and Ngan [10] utilized
the SimRank algorithm on a co-multilayer superpixel tree, and
detected the color and texture similarity between superpix-
els across images. Meng et al. [11] improved the SimRank
matching method by further taking geometric constraints into
account. Fu et al. [12] proposed a clustering based process
to learn inter-image correspondence. To effectively integrate
multiple cues, Cao et al. [13, 14] employed a low-rank con-
straint on the salient regions of multiple saliency map propos-
als, and adaptively determined the fusion weight of each map
proposal. Inspired by the fact that the optimal saliency map
proposal is often region-dependent, our approach adaptively
seeks the weights for saliency fusion in a region-wise manner,
thus leading to more favorable results.

3. THE PROPOSED APPROACH

Given a pair of images I1 and I2 for co-saliency detection, we
apply M existing (co-)saliency detection algorithms, e.g. [3,
4, 5, 10], and getM saliency maps for each image. For locally
adaptive saliency map fusion, images I1 and I2 are respec-
tively decomposed into N1 and N2 superpixels, which serve

as the domain of region-wise fusion. Our approach aims to
seek a weight vector yi = [yi,1 yi,2 . . . yi,M ]> ∈ RM for
each superpixel i, where i ∈ {1, 2, .., N1 + N2}. The co-
saliency detection is accomplished by superpixel-wise fusing
the M saliency maps. Our approach formulates this task of
region-wise fusion as an energy minimization problem over
a graph. In the following, the image pre-processing and the
graph construction are introduced first. The proposed energy
function and its optimization are then described.

3.1. Image Pre-processing

The SLIC algorithm [15] is used for deriving superpixels, be-
cause it effectively preserves inherent structures while ab-
stracts unnecessary details. We set the numbers of superpixels
to N1 = N2 = 200 in this work.

Two types of visual features, color and texture, are ex-
tracted for each superpixel. For color features, each pixel in
the three color spaces, RGB, L∗a∗b∗, and YCbCr, is repre-
sented by a 9-dimensional vector. Using the bag-of-words
model, all pixels in the image pair are quantized into clus-
ters by using the k-means algorithm. Each superpixel is then
represented as a k = 100-dimensional histogram. For tex-
ture features, Gabor filter responses with eight orientations,
three scales and two phase offsets are extracted for each pixel.
The texture features of a superpixel are similarly encoded as a
100-dimensional histogram by using the bag-of-words model.

Let pi and qi denote the color and texture representations
of superpixel i respectively. The similarity between super-
pixel i and superpixel j is defined as

A(i, j) = exp(−d(pi,pj)

σc
− γ d(qi,qj)

σg
), (1)

where d(·) is the χ2 distance. We set γ = 1.5 to put more
emphasis on Gabor features. The value of constant σc is set to
the average pair-wise distance between all superpixels under
their color features. The value of σg is similarly set.

3.2. Graph Construction

We construct a graph G = (V, E = E1 ∪ E2). In G, each ver-
tex vi ∈ V corresponds to superpixel i, thus |V| = N1 +N2.
The edge eij ∈ E1 is added to link vi and vj if superpixels i
and j are spatially connected in an image. The edge eij ∈ E2
is included to connect vi and vj if superpixel j is one of the
` nearest neighbors of superpixel i in the opposite image ac-
cording to the similarity in Eq. (1). We set ` = 1 to simulate
the one-to-one superpixel matching scenario. Edge weights
for both types of edges are assigned by (1) to get the affinity
matrix A for G. We also construct the corresponding Lapla-
cian matrix L ∈ RN×N , where N = N1 +N2.
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3.3. Energy Function

We seek the optimal weights Y = [y1 y2 . . . yN ] ∈ RM×N ,
where M is the number of saliency maps, and N is the total
number of superpixels of I1 and I2, for superpixel-wise map
fusion by minimizing the proposed energy function

min
Y

λ1
∑
vi∈V

U(yi) + λ2
∑
vi∈V

V (yi)

+ λ3
∑
eij∈E

B(yi,yj) + ||Y ‖22 (2)

s.t. ‖yi‖1 = 1,yi ≥ 0, for 1 ≤ i ≤ N,

where 0 is a vector whose elements are zero, and λ1, λ2 and
λ3 are three positive constants. There are four terms intro-
duced in Eq. (2). The first two unary terms, U(yi) and V (yi),
respectively leverage intra-image and inter-image evidences
to estimate the power of each saliency map on superpixel i.
The pairwise term B(yi,yj) encourages the smoothness of
the derived weights on superpixel pairs connected in the graph
G. The last term ||Y ‖22 is included for regularization.

3.3.1. On Designing Unary Term U(yi)

We intend to assign a higher weight to a saliency map that is
consistent with other saliency maps on superpixel i. It helps
exclude distinct biases in individual maps. Inspired by [16],
we employ a low-rank constraint for this task, but we further
generalize the method in [16] to locally estimate the good-
ness of each saliency map. For superpixel i, we find its n
spatially nearest superpixels. Let xi,m ∈ R256 be a 256-
dimensional histogram representing the intensity distribution
of saliency values of saliency map m on these n superpixels.
By stacking the M different vectors for all saliency maps,
Xi = [xi,1 xi,2 . . . xi,M ] ∈ R256×M , we infer the consis-
tent part by seeking a low-rank surrogate of Xi. Specifically,
robust PCA [17] is adopted to decompose Xi into a low-rank
approximation Li plus a residual matrix Ei by solving

min
Li,Ei

(||Li||∗ + λ||Ei||1), s.t. Xi = Li + Ei, (3)

where ||Li||∗ is the nuclear norm of Li, and λ is a constant.
After solving Eq. (3), higher weights are assigned to saliency
maps with lower residual errors Ei = [ei,1 . . . ei,M ], i.e.,

wi,m =
exp(−||ei,m||22)∑M
j=1 exp(−||ei,j ||22)

, for 1 ≤ m ≤M. (4)

The above procedure is repeated for each superpixel i. A
penalty variable zi,m = exp(1−wi,m)/

∑M
j=1 exp(1−wi,j)

is introduced to construct the first term in Eq. (2) by letting

∑
vi∈V

U(yi) =

N∑
i=1

z>i yi = tr(Z>Y ), (5)

where zi = [zi,1 . . . zi,M ]> and Z = [z1 . . . zN ].

3.3.2. On Designing Unary Term V (yi)

This term is designed to reduce the false saliency detection by
exploring inter-image correspondences. Let ei represent the
similarity between superpixel i and its most similar superpixel
in the other image. Let si,m denote the mean saliency value
of saliency map m on superpixel i. The larger the value of
ei is, the more likely superpixel i has a correspondence in the
other image. Thus, we prefer saliency map m if the value of
si,m is proportional to that of ei.

This unary term penalizes the case where only one of ei
and si,m has large values, encouraging salient regions with
matched regions in the other image. Penalizing variable ri,m
is defined as

ri,m =
exp((1− ei)si,m + ei(1− si,m))∑M
j=1 exp[(1− ei)si,j + ei(1− si,j)]

. (6)

The denominator in Eq. (6) is for normalization. By consid-
ering all superpixels, the second term in Eq. (2) becomes

∑
vi∈V

V (yi) =

N∑
i=1

r>i yi = tr(R>Y ), (7)

where ri = [ri,1 . . . ri,M ]> and R = [r1 . . . rN ].

3.3.3. On Designing Pairwise Term B(yi,yj)

We impose this pairwise term to encourage the smoothness of
the weight distribution Y between connected superpixels in
the graph G. The formulation of this term is defined as∑

eij∈E

B(yi,yj) =
∑

eij∈E

A(i, j)‖yi − yj‖22 = tr(Y LY >), (8)

where L is the Laplacian matrix of G.

3.4. Optimization Process and Spatial Refinement

With the definitions of the unary and pairwise terms in
Eqs. (5), (7), and (8), the constrained optimization prob-
lem in Eq. (2) is a quadratic programming (QP) problem, and
has a globally optimal solution. The asymptotic worst-case
time complexity using the interior-point method for the con-
vex QP is O((NM)3) [18]. We adopt the CVX solver [19]
on MATLAB to solve it, and the average running time for
each image pair is around 13 seconds on a PC with an Intel i7
2.5GHz CPU and 16G RAM. After optimization, the saliency
detection results can be compiled by superpixel-wise fusing
the saliency maps with the solution Y . To further improve
the performance, the spatial refinement process [13, 14] is
applied to the yielded saliency map. It re-scales the saliency
values by a combination of thresholding and normalization.

4. EXPERIMENTAL RESULTS

In this section, our approach is evaluated on the Image Pair
dataset [10], which consists of 105 image pairs with manually
labeled ground truth.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Fig. 2: (a) & (b) Two exemplar image pairs and the ground truth. (c) ∼ (j) Saliency maps generated by different approaches
including (c) IT [3], (d) SR [4], (e) FT [5], (f) CC [10], (g) CP [10], (h) LI [10], (i) SACS [13], and (j) Ours.
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Fig. 3: The performance of various approaches in (a) PR
curves and (b) ROC curves.

Experimental Setup: Following [10], we compute five
saliency map proposals by three saliency detection algo-
rithms, IT [3], SR [4], and FT [5], and one co-saliency de-
tection algorithm [10] with two features, color CC and texture
CP. Except the five proposals, our approach is compared with
two fusion-based approaches to co-saliency detection, includ-
ing LI [10] and SACS [13]. Note that the approaches, LI,
SACS, and ours, work by fusing the same five map proposals.

The performance of each evaluated approach is measured
by the precision-recall (PR) curve, which is obtained by vary-
ing the saliency threshold. PR curves tend to favor methods
that successfully detect the salient regions over methods that
precisely locate the non-salient regions. Thus, receiver op-
erating characteristics (ROC) curves and mean absolute er-
ror (MAE) based on the given ground truth are also included
for performance evaluation. In our experiments, we have set
λ1 = 8, λ2 = 4, λ3 = 1 in (2) and λ = 0.05 in (3).

Result Analysis: The PR curves and the ROC curves from
our approach and seven competing approaches are shown in
Fig. 3a and Fig. 3b, respectively. We also report the area un-
der the curve (AUC) of PR curves, the AUC of ROC curves,
and MAE of these approaches in Table 1.

It can be observed in Fig. 3 and Table 1 that the meth-
ods LI [10] and SACS [13] can effectively leverage the mu-
tual signal strengths among the five saliency proposals, IT,
SR, FT, CC, and CP, and remarkably outperform all the five
proposals. Our approach takes region-wise fusion into ac-

Method IT [3] SR [4] FT [5] CC [10] CP [10] LI [10] SACS [13] Ours

PR AUC 0.640 0.471 0.559 0.702 0.681 0.824 0.836 0.861
ROC AUC 0.872 0.718 0.756 0.881 0.865 0.930 0.944 0.952

MAE 0.259 0.269 0.253 0.163 0.173 0.173 0.172 0.163

Table 1: The performance of various approaches in 1) AUC
of PR, 2) AUC of ROC, and 3) MAE. The higher the better in
the first two measures. The lower the better in MAE.

count, and can make the most of the five locally complemen-
tary saliency maps. As shown in Fig. 3, our approach con-
sistently achieves better performance than all the competing
approaches. In Table 1, the performance gain over SACS,
the best competing approach, is significant, including 2.5%
in AUC of the PR curve, 0.9% in the MAE and 0.8% in the
AUC of the ROC curve.

To gain insight into the quantitative results, Fig. 2 shows
the detected saliency maps on two image pairs by using the
seven competing approaches and ours. The saliency pro-
posals that use intra-image evidences, including IT, SR and
FT, produce many severe false salient regions. Meanwhile,
the saliency proposals that use inter-image evidences, such
as CC and CP, detect salient regions with lower confidence.
Methods LI and SACS indeed give better results by fusion.
Our approach with the aid of region-wise fusion complies the
saliency maps that are perceptually the closest to the ground
truth. Furthermore, the saliency maps by our approach are
sharper, namely detection with higher confidence.

5. CONCLUSIONS

We have presented a saliency detection approach that carries
out locally adaptive saliency map fusion. It is formulated as
a quadratic programming problem and can be efficiently opti-
mized by off-the-shelf solvers. It makes the most of multiple
locally complementary saliency proposals and generates both
quantitatively and perceptually high-quality saliency maps. In
future, we plan to evaluate our approach with more bench-
mark datasets and generalize it to jointly work with related
tasks, such as co-segmentation, sparse image matching, and
dense image alignment.
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