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ABSTRACT

A generalized Swendsen-Wang (GSW) algorithm is proposed for the
joint segmentation of a set of multiple images sharing, in part, an un-
known number of common classes. The class labels are a priori mod-
eled by a combination of the hierarchical Dirichlet process (HDP)
and the Potts model. The HDP allows the number of regions in each
image and classes to be automatically inferred while the Potts model
ensures spatially consistent segmentations. Compared to a classical
Gibbs sampler, the GSW ensures a better exploration of the posterior
distribution of the labels. To avoid label switching issues, the best
partition is estimated using the Dahl’s criterion.

Index Terms— Image segmentation, Bayesian nonparametrics,
Dirichlet Process, Swendsen-Wang algorithm, Potts model.

1. INTRODUCTION

In various computer vision applications ranging from medical engi-
neering to Earth observation, image classification has been shown
to be a crucial processing which still motivates numerous research
works. When analyzing a collection of J images, the information
shared among these images can be exploited by conducting a joint
segmentation. It is expected to provide more reliable classification
results than J individual classifications operated on each image sepa-
rately. More precisely, a joint segmentation consists in dividing each
image into mj·(j = 1, . . . , J) homogeneous regions and grouping
the regions that share common characteristics in K classes. The
number of classes is mostly considered known, but, for more flex-
ibility, the estimation of K can be also of interest. Estimating the
optimal number of classes can be formulated as a model order se-
lection. This issue has been addressed following various approaches
in the literature. One popular approach conducted within a Bayesian
framework consists in sampling the joint posterior distribution of the
labels and the number of classes by resorting to reversible jumps be-
tween spaces of different dimensions [1].

More recently, Bayesian nonparametric models have been advo-
cated to overcome the computational burden required by reversible
jump algorithms. In particular, the Dirichlet process (DP) [2] has
been shown to be well-suited for segmenting images without know-
ing a priori the number of classes. However, the DP cannot model
shared classes between the images to be segmented. As an alter-
native, the hierarchical Dirichlet process (HDP) introduced by Teh
[3] can be considered. Benefiting from this formalism, the number
mj· of regions in each image (j = 1, . . . , J) and the number K of
classes can be estimated in an unsupervised Monte Carlo sampling
procedure.

This work has been supported by the BNPSI ANR project no. ANR-13-
BS-03-0006-01.

Beyond this automatic selection, a key feature when designing
a segmentation procedure is to promote the homogeneity of the con-
sidered images. Within a statistical framework, Markov random
fields (MRF) [4, 5] have been a popular modeling to ensure that
neighboring pixels have higher probability to be assigned to the same
class. To address both order selection and spatial smoothness, we
proposed in [6] a prior model combining the HDP and the Potts-
MRF model to jointly segment a collection of several images. By
adopting this approach, Bayesian inference of the parameters of in-
terest cannot be performed analytically and, consequently, a Gibbs
sampler was derived. The method was applied on a toy example.
However, resorting to this so-called HDP-MRF model to analyze
images of significantly higher size, e.g., extracted from the LabelMe
database1, leads to severe computational issues when using the crude
instance of Gibbs sampler developed in [6]. This paper specifi-
cally proposes an algorithmic strategy to alleviate this difficulty by
a twofold contribution. First, it implements a pre-segmentation into
super-pixels which reduces the complexity of the problem. Then,
it derives a generalized Swendsen-Wang (GSW) [7] based algorithm
for the HDP-MRF model. It consists in introducing link variables be-
tween pixels of the same regions; these link variables do not modify
the posterior distribution but they can be efficiently sampled jointly
with the variables of interest, which speeds up convergence. Finally,
another contribution is to consider the Dahl’s criterion to infer the
optimal partition within the sampled ones.

The sequel of the paper is organized as follows. Section 2 in-
troduces the proposed prior model. The HDP and Potts model are
described and the prior distributions are provided. In Section 3, the
GSW algorithm is detailed and the sampling equations are derived.
Results obtained on a set of several images are presented in Section
4 and concluding remarks are reported in Section 5.

2. BAYESIAN NONPARAMETRIC MODEL

2.1. Notations and observation model

Let us consider a set of J images Ij to be jointly segmented (j =
1, . . . , J). To reduce the computational cost due to sampling-based
exploration, a common approach consists in first dividing each im-
age Ij (j = 1, . . . , J) into Nj super-pixels2. The observation as-
sociated with the nth super-pixel (n = 1, . . . , Nj) in image j is de-
noted yjn and assumed to be distributed according to a distribution
f parameterized by θjn, i.e., yjn|θjn ∼ f(yjn|θjn).

The region label associated with the nth super-pixel in the jth
image is denoted cjn. In a given image, a set of super-pixels that are

1http://labelme.csail.mit.edu/Release3.0/
2Note that the proposed algorithm is also valid if directly applied to the

pixels.
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Fig. 1. Simplistic example of joint segmentation with J = 3 and
K = 5. The regions in each image are numbered and the colors
identify the classes. It can be noticed that there is a different number
of regions in each image and some regions in these images can be
assigned to the same class, such as region 5 in image 2 and region 4
in image 3, both assigned to class ”white”.

assigned the same region label value is referred to as a region. At a
higher level of the modeling, the class label of the tth region in the
jth image is denoted djt. The images are assumed to share at most
K distinct classes where the kth class is defined as the collection of
all regions assigned the class label value k. An example is shown on
figure 1.

All super-pixels (j, n) assigned to the kth class (k = 1, . . . ,K)
share the same parameter vector θjn = φk. Thus, assuming prior
independence between the classes, the marginal distribution of the
super-pixels y = ∪Kk=1yAk

can be written as

f(y) =

K∏
k=1


∫  ∏

(j,n)∈Ak

f(yjn|φk)

h(φk)dφk

 (1)

where yAk
= {yjn|(j, n) ∈ Ak} is the set of super-pixels assigned

the kth class label with Ak = {(j, n)|djcjn = k} and h(·) is the
prior distribution of the parameters φk (k = 1, . . . ,K).

2.2. Hierarchical Dirichlet process

Let Gj denote the unknown probability distribution of the parame-
ter vectors θjn of the jth image (j = 1, . . . , J). Since the number
of classes is assumed to be unknown, the parameters θjn can take a
priori an infinite number of values. This naturally induces a nonpara-
metric prior modeling for Gj . Here, several parameter vectors can
take the same value, hence Gj should be discrete. A solution is to
assume that Gj is distributed according to a Dirichlet process (DP).
The latter depends on a scalar parameter α0 and a base measure G0:

Gj ∼ DP(α0,G0) and Gj =

∞∑
t=1

τjtδψjt (2)

with ψjt the parameter vector of the tth region in the jth image.
More precisely, for all super-pixels n such that cjn = t, we have
θjn = ψjt. In (2), Gj is an infinite sum of Dirac measures on the
ψjt, weighted by τjt. To allow classes to be shared, all the dis-
tributions Gj should have common atoms φk. The adopted solu-
tion consists of defining G0 as a discrete measure centered on these
atoms φk. These latter are unknown and assumed independently
distributed according to a probability measure H with probability
density function h as introduced in (1). Since the number of classes
K is supposed unknown, a DP is chosen as prior, i.e.,

G0 ∼ DP(γ,H) and G0 =

∞∑
k=1

πkδφk .

An interesting property with the above described model is that,
given the region labels of the other pixels, the probability that the

nth super-pixel in the jth image is assigned to the tth region is pro-
portional to the number νjt of super-pixels in that region. It can also
be assigned to a new region tnew proportionally to α0:

Pr(cjn = t|c−nj ) ∝

{
νjt if t ≤ mj·

α0 if t = tnew

with c−nj = {cjn′ |n′ = 1, . . . , Nj , n
′ 6= n}. When considering the

tth region in the jth image, two cases are also possible: it can either
be assigned to an existing class k proportionally to m·k or to a new
one proportionally to γ, where m·k is the number of regions of all
the images assigned to class k, i.e.,

Pr(djt = k|d−jt) ∝

{
m·k if k ≤ K
γ if k = knew

where d−jt = {dj′t′ |j′ = 1, . . . , J ; t′ = 1, . . . ,mj′·; (j′, t′) 6=
(j, t)}. The prior ϕ induced by the HDP for the set of region labels
c = {cjn|j = 1, . . . , J ;n = 1, . . . , Nj} and the set of class labels
d = {djt|j = 1, . . . , J ; t = 1, . . . ,mj·} depends on the size of the
regions, the number of regions per class and the overall number of
regions denoted m··. It can be written [3]:

ϕ(c,d) =

J∏
j=1

{[
Γ(α0)

Γ(Nj + α0)

]
α
mj·
0

[mj·∏
t=1

Γ(νjt)

]}

Γ(γ)

Γ(m·· + γ)
γK
[
K∏
k=1

Γ(m·k)

]
(3)

2.3. Potts model

The Potts model is a prior on the class labels [8]. With the Potts
model, the image is redefined using a neighboring system on the
pixels. This model allows the homogeneity of the classes to be pre-
served by favoring that a given pixel and its neighbors share the same
class. It can be noticed that, within a super-pixel formalism, two
super-pixels are defined as neighbors if they have a common ridge.
The Potts prior writes

ρ(c,d) ∝
J∏
j=1

exp

(∑
n∼q

βδ(djcjn , djcjq )

)
(4)

where n ∼ q means that super-pixel q is a neighbor of n and δ(·) is
the Kronecker symbol.

2.4. Joint prior distribution

The proposed prior distribution is

Pr(c,d) ∝ ϕ(c,d)ρ(c,d). (5)

It consists of a combination of a global penalization ϕ and a local
one ρ where ϕ ensures that the number of regions and classes do not
need to be a priori fixed and ρ favors spatial homogeneity.

3. SAMPLING SCHEME

In part due to the nonparametric nature of the posterior distribution,
no closed-form expressions of the Bayesian estimators can be de-
rived. To approximate these estimators, a Gibbs sampler was derived
in [6]. However, as noticed earlier, the Gibbs algorithm has poor
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Fig. 2. Example of links sampled within the GSW algorithm. The
dashed lines delimit the regions in the images, the thick lines are
links and the colors represent the classes. On first line the partition
that can be obtained by assigning links only based on classes and the
last the links obtained based on the region labels.

mixing properties, which motivates the proposed contribution. The
generalized Swendsen-Wang (GSW) algorithm described in what
follows aims at improving the exploration of the posterior distribu-
tion [9, 10].

3.1. Generalized Swendsen-Wang algorithm

The Swendsen-Wang algorithm introduced in [11] and generalized
in [12] is a sampler derived from the Potts model to ensure a more ef-
ficient exploration of the posterior distribution of the labels. Here, it
is adapted to the HDP-Potts model. First, groups of super-pixels are
formed using latent variables. They are defined as follows: rjnq = 1
if super-pixels n and q in image j are linked and rjnq = 0 otherwise.
Then, linked super-pixels are grouped into spin-clusters and their
labels are simultaneously updated. Moreover, the introduction of
these latent variables should not modify the corresponding marginal-
ized posterior distribution of the labels, i.e.,

∑
r p(c,d, r|y) =

p(c,d|y) with r = {rjnq |j = 1, . . . , J ;n, q = 1, . . . , Nj}. Since
two sets of labels have been introduced in the context of joint seg-
mentation considered in this paper, namely c and d, an important
issue to address is to identify conditionally to which of them the
links should be sampled.

A first solution would consist of introducing the links with
respect to the class assignment. However, since different regions
can be assigned to the same class in an image, super-pixels of
different regions could be sampled jointly which is not desir-
able. As an alternative, the links can also be based on the re-
gion labels. Conditionally to the partition, the probability that
two super-pixels are not linked is written Pr(rjnq = 0|c,d) ∝
exp

(
−βλδ(cjn, cjq)δ(djcjn , djcjq )

)
, where λ is a parameter to be

adjusted. Since pixels in the same region necessarily belong to the
same class, δ(cjn, cjq)δ(djcjn , djcjq ) = 1 only when cjn = cjq . It
follows p(r|c,d) = p(r|c) and

Pr(rjnq = 1|c) = 1− exp (−βλδ(cjn, cjq)) (6)

As long as only the partition matters, a GSW-based Gibbs sam-
pling consists in first sampling the links r ∼ Pr(r|c,d,y), then
the region labels, c ∼ Pr(c|r,d,y) and finally the class labels
d ∼ Pr(d|c, r,y). In the following, these conditional distributions
are detailed.

3.2. Sampling of the links

Regarding the conditional distribution of the links, it can be noticed
that conditionally to the partition, the links are independent of the
observations, Pr(r|c,d,y) = Pr(r|c). Thus, for all super-pixels,
the links can be independently sampled according to (6).

3.3. Sampling of the region label

Once the links have been sampled, linked super-pixels are grouped
into spin-clusters. Thanks to the Swendsen-Wang algorithm, the la-
bels of the regions are sampled simultaneously for all pixels in the
same spin-cluster. In the next paragraphs, the following notations are
adopted: for the lth spin-cluster in the jth image, the corresponding
set of super-pixels, the set of region labels and the set of observations
are denoted Cjl with size |Cjl|, cjl with cjl = {cjn|n ∈ Cjl} and
yjl, respectively.

According to the HDP prior, the super-pixels in Cjl can be as-
signed to an existing region or a new one. The conditional proba-
bility of having cjl = t ≤ mj· is proportional to the probability
that the first super-pixel in Cjl is assigned to the tth region (ν−jljt ),
then the second (ν−jljt + 1) till the last one (ν−jljt + |Cjl| − 1). It
is also proportional to the distribution of the observations attached
to Cjl conditionally to the observations attached to super-pixels in
class djt, f(yjl|yA−jl

djt

) = f(yjl,yA−jl
djt

)/f(y
A
−jl
djt

) with A−jldjt
the

set of super-pixels in class djt except the ones in spin-cluster Cjl.
Similarly, the probability of having cjl = tnew is proportional to
α0 × 1 × · · · × (|Cjl| − 1) and p(yjl |cjl = tnew, c−jl,d,y−jl)
obtained by integrating out within all possibilities for the class that
can be assigned to the new region. It follows

Pr(cjl = t ≤ mj·|c−jl,d, r,y) (7)

∝
Γ(ν−jljt + |Cjl|)

Γ(ν−jljt )
exp

− ∑
q∈VCjl

β λ δ(t, cjq)

 f(yjl|yA−jl
djt

)

where VCjl is the set of super-pixels neighbors of the super-pixels in
spin-cluster Cjl and

Pr(cjl = tnew|c−jl,d, r,y) (8)

∝ α0 Γ(|Cjl|) p(yjl|cjl = tnew, c−jl,d,y−jl)

with

p(yjl |cjl = tnew, c−jl,d,y−jl) (9)

∝


K∑
k=1

m·k exp

 ∑
q∈VCl

βδ(djcjq , k)

+ γ


−1


K∑
k=1

m·k exp

∑
q∈VCl

βδ(djcjq , k)

 f
(
yjl |yA−jl

k

)
+ γf(yjl)


where f(yjl) =

∫
[
∏
n∈Cjl

f(yjn|φknew )]h(φknew )dφknew . In the
case of a new region, the assigned class label is sampled following

Pr(djtnew = k |c,d−jt
new

,y) (10)

∝

m·k exp

( ∑
q∈Vtnew

β δ(djcjq , k)

)
f(yjl |yA−jl

k
) if k ≤ K

γ f(yjl) if k = knew
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3.4. Sampling of the class label

As for the region labels, the probability that the tth region in the
jth image can be assigned to an existing kth class is proportional to
the number m−jt·k of regions assigned to the kth class, omitting the
considered one. Conversely, it can be assigned to a new class with
probability proportional to γ, leading to

Pr(djt = k |c,d−jt,y) (11)

∝

m
−jt
·k exp

( ∑
q∈Vt

β δ(djcjq , k)

)
f(yjt |yA−jt

k
) if k ≤ K

γ f(yjt) if k = knew

3.5. Deriving the Bayesian estimators

In a Bayesian framework, the best partition is generally estimated
using the marginal maximum a posteriori estimator. However, when
facing to the nonparametric Bayesian models, not only the well-
known label-switching problem may occur but the number of classes
varies within the exploration routine. A re-labeling is thus needed,
which may be computationally prohibitive. An alternative consists
of directly choosing the partition that maximizes the posterior dis-
tribution. However, this strategy does not take into account all the
richness of the information described by the distribution of interest.
Motivated by numerous works in the statistical community [13, 14],
the approach adopted in this paper consists of computing an optimal
label assignment by selecting the best partition independently of the
class numbering in the sense that it minimizes a given loss function.

Let us denote κ = {djcjn ; j = 1, . . . , J ;n = 1, . . . , Nj} the
set of classes assigned to each super-pixels in the images with κjn =
djcjn . The optimal estimate κ̂ is chosen here as the one minimizing
an appropriate loss function associated with partitions and defined3

as [16]:

κ̂ = argmin
κ(i)∈{κ(1),...,κ(I)}

∑
j,n,q

(
δ(κ

(i)
jn , κ

(i)
jq )− ζjnq

)2
(12)

with
ζjnq =

1

I

I∑
i=1

δ(κ
(i)
jn , κ

(i)
jq )

and κ(i) the vector κ at the ith iteration of the HDP-GSW algorithm
and I the total number of iterations after the burn-in period.

4. RESULTS

The algorithm has been applied on three images (J = 3) of the
LabelMe database of size 256 × 256. Each image has been pre-
segmented in approximately 500 super-pixels using the SLIC algo-
rithm [17]. An observation for a super-pixel is defined as a gray-level
histogram of 120-bins and f(yjn|θjn) = Mult(θjn) where Mult(.)
is the multinomial distribution.

For the prior model, h is chosen as a Dirichlet density, Dir($π̃)
with π̃ taken as the normalized sum of the histograms and$ a scalar
parameter, here, $ = 104. It should be noted that $ influences the
inference of the number of classes; the greater it is, the less classes
will be proposed. The hyperparameters are chosen as: α = 1, γ = 1,
β = 0.25 and λ = 10.

The figure 3 represents the logarithm of the non-normalized pos-
terior distribution of the labels of regions and classes corresponding

3Note that this definition is equivalent to the minimization-driven proce-
dure proposed in [15]
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Fig. 3. Logarithm of the non-normalized posterior distribution of
the labels corresponding to the samples obtained with the classical
Gibbs and HDP-GSW algorithms depending on the number of the
iteration.

Fig. 4. On the first line, the true images and on the second line, the
partition obtained with the HDP-Potts-GSW algorithm

to each sample of the HDP-Potts-GSW algorithm (blue) and the stan-
dard Gibbs for the HDP-Potts model (black). It can be seen that the
exploration derived by the classical Gibbs algorithm is stuck in a
local maximum, contrary to the HDP-Potts-GSW one.

The best segmentation in terms of Dahl’s criterion is shown in
figure 4. The resulted segmentation takes into account the shared
classes as expected. However, the images are over-segmented (K =
18), this may be due to the fact that the images have not been taken
in the same conditions (brightness, sensor, . . . ) and the histograms
may not be a sufficient descriptor to characterize the classes.

5. CONCLUSION

An algorithm for segmenting jointly multiple images is proposed to
overcome the computational issues encountered while implement-
ing a Gibbs sampler based on the HDP-Potts model introduced in
[6]. It consists of an extension of the GSW algorithm. While the
HDP allows the number of classes to be derived automatically, the
Potts model ensures a spatial homogeneity in each image and the
GSW improves the exploration scheme of the posterior distribution
of the labels. Obtained results show that the HDP-GSW algorithm
exploration is more efficient than the classical HDP-Potts one, yet,
the inference is sensitive to not only the value of the hyperparame-
ters but also to the way of describing the observations. To overcome
these issues, we are currently investigating on the one hand the use
of sequential Monte Carlo samplers [18] to adjust the hyperparame-
ters while sampling the labels with the best hyperparameters and on
the other hand the use of more relevant and robust descriptors of the
classes (e.g. the texture).
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