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ABSTRACT

Conventional unsupervised image segmentation methods use
color and geometric information and apply clustering algo-
rithms over pixels. They preserve object boundaries well but
often suffer from over-segmentation due to noise and artifacts
in the images. In this paper, we contribute on a preprocessing
step for image smoothing, which alleviates the burden of con-
ventional unsupervised image segmentation and enhance their
performance. Our approach relies on a convolutional autoen-
coder (CAE) with the total variation loss (TVL) for unsuper-
vised learning. We show that, after our CAE-TVL preprocess-
ing step, the over-segmentation effect is significantly reduced
using the same unsupervised image segmentation methods.
We evaluate our approach using the BSDS500 image segmen-
tation benchmark dataset and show the performance enhance-
ment introduced by our approach in terms of both increased
segmentation accuracy and reduced computation time. We
examine the robustness of the trained CAE and show that it is
directly applicable to other natural scene images.

Index Terms— Image segmentation, unsupervised, con-
volutional autoencoder, total variation loss

1. INTRODUCTION

Image segmentation is a process to divide a given image into
several non-overlapping regions, where each region is ex-
pected to be an object or a part of an object. Unsupervised
image segmentation is a challenge topic which serves as the
first step for many high-level computer vision tasks [1, 2].
Classical approaches use variations of clustering algorithms
[3, 4] or growing and merging of regions [5]. They are simple
to use and require only basic color and geometrical infor-
mation of pixels. While the true object boundaries are well
preserved, these methods often suffer from over-segmentation
due to noise and artifacts in the images.

Several properties are expected in a segmented region.
For instance, the inter-region areas should be smooth. One
common assumption for this is the piece-wise constancy of
the pixel intensity values. To achieve this, the total vari-
ation (TV) is one of the most used regularization terms.
Among the best known and most influential examples are
the Rudin-Osher-Fatemi (ROF) image denoising model [6]

and the Mumford-Shah image segmentation model [7]. As
all these methods are based on the calculus of variations
and partial differential equations (PDEs), different relaxation
conditions and their approximate solutions were significantly
under research. However, solving the optimization problem
still remains to be more efficient.

In recent years, the machine learning techniques experi-
ence an explosion of progress, mainly due to the advance of
deep neural networks. Among them, the convolutional neural
network (ConvNet) is most attractive in vision problems due
to its convenience of being stacked into deep networks and its
ability of representing image features with high robustness,
rotation invariance and many other properties. Recent works
[8, 9] illustrate the application of fully convolutional network
for semantic segmentation, where a large number of human
annotations are required as ground truth for training.

In this paper, we aim at unsupervised image segmentation.
While ConvNet has been proved to be powerful in high-level
image recognition/classification, our idea is to utilize the effi-
ciency of ConvNet and its ability of vision modeling for low-
level image segmentation. We model the objective function
by a convolutional autoencoder (CAE) using a reconstruction
loss and a total variation loss (TVL). We introduce TVL as
a regularization term and thus, enforce pixel-wise smooth-
ness. We show that this objective function can be straight-
forwardly optimized by gradient descent methods with back-
propagation as used in deep learning. After that, the smoothed
image undergoes an unsupervised image segmentation. Fig.
1 shows an example of our approach.

(a) (b) (c) (d)

Fig. 1. An example of our approach. The segmentation of
an image (a) using a conventional unsupervised image seg-
mentation method [5] is shown in (b). We propose to smooth
(a) using our CAE-TVL into (c) before segmentation. The
new segmentation result using the same unsupervised image
segmentation method is shown in (d).

Our work is related to prior works [10, 11] which use
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ConvNet for low-level image processing. In [10], ConvNet
was used to restore electron microscopic images. This work
demonstrated that complex ConvNet outperforms simple
MRF/CRF models while being more efficient during training
and inference. However, they required ground truth restora-
tions provided by human experts for supervised training. Jain
and Seung [11] proposed to use ConvNet for image denois-
ing. They assumed a noise process on the input image and
training the network by minimizing the reconstruction error
subject to the noise process. None of these works used the
idea in this paper of combining both the reconstruction loss
and the TVL for unsupervised training of a CAE.

In the next section, we introduce the proposed approach
for unsupervised image segmentation in details. The experi-
mental results are presented in section 3 and a short conclu-
sion is given in section 4.

2. THE APPROACH

The main part of our approach is a convolutional autoencoder
called CAE-TVL, which is trained in an unsupervised manner
and used for preprocessing of segmentation. Given a test im-
age, the CAE-TVL network outputs a smoothed version of it,
where the noise and artifacts are significantly reduced. Thus,
the smoothed image is more suitable for segmentation.

2.1. Model description

Traditional autoencoders are fully connected and learn the
identity mapping. In the case of image data, the traditional
autoencoders ignore the 2D image structure. However, the
trend in vision and object recognition is to discover localized
features that repeat themselves over the input. We hence re-
place the fully connected layers by convolutional layers. The
convolutional kernels are shared all over the image, reducing
the redundancy in the parameters.

Let W(l) ∈ RPl×Ql×Sl×Tl be a 4D tensor containing all
convolutional kernels of the l-th convolutional layer. The first
two dimensions indicate spatial coordinates, the third dimen-
sion is the number of channels of the source layer and the
fourth the number of channels of the target layer. We define
the convolution W(l) ∗ X(l−1) of the two tensors W(l) and
X(l−1) ∈ RM×N×Sl as

(W(l) ∗X(l−1))mnt =

Pl∑
p=1

Ql∑
q=1

Sl∑
s=1

W
(l)
pqstX

(l−1)
m+p−1,n+q−1,s.

(1)
This is a 3D convolution with a stride of 1. To keep the spatial
size, we pad each channel of X(l−1) with zeros as needed
(padding of (Pl − 1) × (Ql − 1)) in the calculation. The
product W(l) ∗X(l−1) ∈ RM×N×Tl has Tl channels. Thus,
the activation X(l) of the l-th convolutional layer is

X(l) = Φ
(
σ(W(l) ∗X(l−1) + B(l))

)
. (2)

Bl ∈ R1×1×Tl denotes the bias terms for Tl output channels.
Φ(·) is an element-wise nonlinear activation function (we use
ReLU [12]) and σ(·) denotes a normalization (we use batch
normalization proposed in [13] which speeds up learning).

The activation X(l) computed by Eq. (2) can be down-
sampled by a pooling layer. We use max-pooling with a win-
dow size of 2 × 2 to keep the most significant activation and
reduce the spatial resolution. The downsampled activation
can be resized to the original image size by unpooling (up-
sampling). We do this by repeating each value once over both
spatial dimensions. We stack a deconvolutional layer after un-
pooling. The deconvolutional layer corresponds to the convo-
lutional one and does transposed convolution. Let Z(l) be the
output of the l-th deconvolutional layer, we define

Z
(l)
mnt =

Sl∑
s=1

Pl−1∑
p=0

Ql−1∑
q=0

W
(l)
p+1,q+1,s,tX

(l−1)
m−p+1,n−q+1,s, (3)

where W(l) and X(l−1) are now the kernels and the input of
the l-th deconvolutional layer, respectively. They are zero-
padded as needed in the calculation. Z(l) is cropped to the
original size of X(l−1).

As neural network has a strong ability of modeling non-
linear function with few hidden layers, we apply a simple
CAE in this paper. Our CAE is build up by a convolutional
layer (including convolution, normalization and activation), a
pooling layer, an unpooling layer and a deconvolutional layer.
Since we focus on low-level segmentation, we do not delve
into deeper architectures which are useful for extracting high-
level representations. We use 16 kernels for the convolutional
layer and 3 kernels for the deconvolutional layer to project the
activation maps back to 3 channels corresponding to RGB. All
kernels have the spatial size of 3× 3 .

2.2. Loss function

Let X ∈ RM×N×3 denote a given color image. FΘ indicates
the nonlinear function of the CAE network with parameters
Θ. Let Y = FΘ(X) be the output of the network and thus,
has the same dimension as X. We define the loss function in
two parts

J1 = ||Y −X||2 + β||W||2 (4)

and
J2 = |∇Y|. (5)

J1 consists of the mean square error (Euclidean loss) term
and the l2-norm regularization term. β is the weight decay pa-
rameter governing the regularization term. We set it to 0.0005
in this paper. J2 is the TVL. It penalizes the locations with
large gradient of pixel intensity value. While J1 drives the
output Y to approach the input X, J2 works in the other way
and enforces Y to be smooth. We combine these two parts
and the overall loss function is defined as
J(X,FΘ, λ, β) = J1 + λJ2

= ||Y −X||2 + β||W||2 + λ|∇Y|.
(6)
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λ is a trade-off parameter controls the weights of the two
parts. Larger λ encourages the output image to be smoother.
We set λ = 0.5 in this paper.

Our loss function is related to the energy function used in
TV-based image denoising and segmentation, both including
the Euclidean loss and TVL. However, the standard TV-based
models work on a single image and tries to evolve the input
image iteratively into the final result. In comparison, we try
to learn a generic smoothing function FΘ which is suitable
for arbitrary input color images. The new image Y is a better
representation of X for segmentation as shown in Fig.1

2.3. Training

Given a set of N training images, our training objective is

Θ̂ = arg min
Θ

N∑
n=1

J(X(n); Θ), (7)

where the parameter vector Θ of the network contains all el-
ements of W(l) and B(l). Notice that we do not use labeled
data and our approach is hence unsupervised.

In practice, we first train the CAE by minimizing the first
part J1 for image reconstruction. Then, we finetune the pa-
rameters by minimizing the overall loss J .

We use stochastic gradient descent (SGD) with momen-
tum to train the network. Just as for standard networks, back-
propagation algorithm is applied to compute the gradient of
the loss function with respect to the parameters. As the first
part J1 of the loss function in Eq. (6) is similar to the general
autoencoder, its gradient can be straightforwardly backprop-
agated like other neural networks. J2 is implemented by first
modeling the Nabla operator ∇ by a convolution of the out-
put Y with two Sobel edge detectors (both column and row
direction) and then taking the l1-norm distance of the gener-
ated gradient maps. Without details (due to limited space),
we can show that the standard backpropagation also works
for the TVL term J2.

We use mini-batch for training and one mini-batch con-
tains 4 images. We train the network with more than 20
epochs. The learning rate is set to 10−7 in the first reconstruc-
tion stage and 10−9 in the finetuning stage. The weights in
our network are initialized by the Xavier method [14]. They
are drawn from a distribution with zero mean and a specific
variance 1√

nin
where nin is the number of input neurons of

the layer. The momentum value is set to 0.9. The training is
performed on a single Intel Core CPU @ 2,6 GHz. The imple-
mentation is based on the Matlab toolbox MatConvNet [15].
A complete training using 200 images takes about 1 hour.

2.4. Segmentation

After training, our CAE-TVL network is supposed to work
for generic images. Given an image, we feed it into our net-

work and get a smoothed version of it. After this prepro-
cessing step, a conventional unsupervised image segmenta-
tion method is applied to the smoothed image to get the final
segmentation.

3. EXPERIMENTAL RESULTS
Our experiments are based on the Berkeley Segmentation
Data Set (BSDS500) [16]. It contains 300 images for train-
ing and validation and 200 images for testing. For each
image, BSDS500 provides human-annotated segmentations
as ground truth by five different subjects on average. How-
ever, these ground truth are only used for evaluation in the
test phase and not used in the unsupervised training of our
CAE-TVL network.

Experiment 1: In the first experiment, we use all 300
images in the training set to train the CAE-TVL network. It is
then used to smooth the 200 test images before unsupervised
image segmentation.

We use Mean Shift (MS) [3], Quickshift (QS) [17] ef-
ficient Graph-based Segmentation (GbS) [5] and SLIC [4]
as unsupervised image segmentation methods and compare
the results of segmentation over original images and our
smoothed images. To our knowledge, these methods are the
most widely used unsupervised image segmentation methods
that achieve good results. All implementations are available
in public. In particular, we use the EDISON implementa-
tion [18] of MeanShift, the VLFeat [19] implementation of
Quickshift, the SLIC implementation from [20] and the GbS
implementation from the original author.

Notice that supervised methods for contour detection [21,
16, 22] and segmentation [23, 16] are not considered. Be-
sides, [24] also presents an unsupervised image segmentation
method based on region growing. However, this method re-
lies on too many prior information and requires many com-
putations for the hand-designed features. On the contrary, the
methods considered in this paper use only color and spatial
information of pixels and are more efficient.

Following [16], we use the performance metrics segmen-
tation covering, rand index (RI) and variational of informa-
tion (VOI) for evaluation. For each method, we use at least
20 different parameter settings to reduce their influence on
the evaluation. Both the segmentation using the optimal pa-
rameter setting for the entire dataset (ODS) and for individual
images (OIS) are considered. In the case of segmentation cov-
ering, the best covering score for each segmented region from
ground truth is averaged and denote as ‘Best’. In addition,
we also report the region numbers of the segmentation results
averaged over all images.

Table 1 shows the benchmark results of the compared
methods. All methods using our CAE-TVL network as pre-
processing outperform the original ones. All the best scores
(highlighted in bold) except for ODS covering are achieved
by our approach. Surprisingly, the ODS covering and RI
score (marked in red) using our CAE-TVL-GbS are worse
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Table 1. Comparison of the evaluation results.
MS CAE-TVL-MS GbS CAE-TVL-GbS QS CAE-TVL-QS SLIC CAE-TVL-SLIC

Covering
ODS 0.4029 0.5006 0.5237 0.5102 0.4247 0.4339 0.4019 0.4155
OIS 0.4681 0.5608 0.5466 0.5606 0.4412 0.4658 0.4272 0.4489
Best 0.5774 0.6086 0.5987 0.6621 0.5715 0.5982 0.5142 0.5246

RI
ODS 0.7656 0.8000 0.8003 0.7934 0.7562 0.8045 0.7491 0.7621
OIS 0.7954 0.8229 0.8171 0.8186 0.7980 0.8362 0.7645 0.7873

VOI
ODS 2.8120 2.2450 2.3016 2.1168 2.6319 2.3238 2.8205 2.4656
OIS 2.5639 2.2537 2.2661 2.0237 2.4794 2.2164 2.7604 2.3945

Averaged reg. num. 209.94 60.13 114.03 58.32 119.41 64.55 619.45 278.65

than using GbS [5] directly. Since our CAE-TVL provides a
smoothed image as input, it is more sensitive to the parameter
setting of the segmentation methods. Assume that the range
of the key parameter for GbS is from 25 to 500 with a step
size of 25. The reason for the above ODS degradation might
be that this parameter grid is too coarse for our approach. The
averaged region numbers are significantly reduced by using
our approach. This agrees with our expectation of restraining
the over-segmentation by using CAE-TVL as preprocessing.

Table 2 presents the computation time we spend to seg-
ment the images (averaged for one image). With preprocess-
ing of our approach, the segmentation methods require less
time to compute the segmentation. To generate a smoothed
image, our CAE-TVL takes less than 0.1 second.

Table 2. Comparison of computation time.
MS GbS Quckshift SLIC

Time (s)
w.o. 39.22 1.96 23.83 44.21
with 36.64 1.74 21.23 34.77

Experiment 2: In this experiment, we test the general-
ization ability and the robustness of our CAE-TVL network.
To do this, we first randomly split the whole data set into two
parts, each containing 250 images. We denote the sub data
sets as D1 and D2. We train our CAE-TVL on one subset Di

and compare the segmentation results using the same bench-
mark as in the first experiment. We only use CAE-TVL-GbS
in this experiment.

Table 3 shows the benchmark scores. The segmentation
accuracies in all four cases are comparable. This demon-
strates that the trained CAE-TVL network is generic and can
be applied once after training, to segment other new images.

To show the robustness of our CAE-TVL network, we first
train it using BSDS500 and then test it on images randomly
selected from Internet. Fig. 2 shows several examples. No-
tice that the BSDS500 contains scarcely street scene images
like shown in the figure, but our approach can still generate
improved segmentation.

4. CONCLUSION
In this paper, we deal with unsupervised image segmentation.
We propose to train a convolutional autoencoder (CAE) with

Table 3. Cross validation using CAE-TVL-GbS. The short
notation in the first row is structured by ‘training data set -
test data set’

D1-D1 D1-D2 D2-D1 D2-D2

Covering
ODS 0.5048 0.5072 0.5018 0.5176
OIS 0.5739 0.5795 0.5705 0.5802
Best 0.6589 0.6635 0.6560 0.6648

RI
ODS 0.7506 0.7587 0.7750 0.7812
OIS 0.8053 0.8088 0.8239 0.8287

VOI
ODS 2.1441 2.1063 2.1876 2.1092
OIS 1.9805 1.9542 2.0417 2.0196

Averaged reg. num. 60.724 58.052 59.417 56.960

Fig. 2. Test examples using randomly selected images from
Internet. From left to right: original images, segmentation re-
sults using [5], smoothed images generated by the pre-trained
CAE-TVL using BSDS500, new segmentation results using
the same unsupervised image segmentation method.

total variation loss (TVL) to smooth images. Using our CAE-
TVL as preprecessing improves the performance of unsuper-
vised image segmentation methods and reduce their compu-
tation complexity at the same time. Our approach is robust
over different datasets and a pre-trained CAE-TVL network
is applicable for segmentation tasks of general natural scene
images from other datasets.
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