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ABSTRACT

Tensor principal component analysis (TPCA) is a multi-linear
extension of principal component analysis which converts a set of
correlated measurements into several principal components. In this
paper, we propose a new robust TPCA method to extract the princi-
pal components of the multi-way data based on tensor singular value
decomposition. The tensor is split into a number of blocks of the
same size. The low rank component of each block tensor is extracted
using iterative tensor singular value thresholding method. The prin-
cipal components of the multi-way data are the concatenation of all
the low rank components of all the block tensors. We give the block
tensor incoherence conditions to guarantee the successful decom-
position. This factorization has similar optimality properties to that
of low rank matrix derived from singular value decomposition. Ex-
perimentally, we demonstrate its effectiveness in two applications,
including motion separation for surveillance videos and illumination
normalization for face images.

Index Terms— tensor principal component analysis, tensor sin-
gular value decomposition, low rank tensor approximation, block
tensor

1. INTRODUCTION

The high-dimensional data, also referred to as tensors, arise natural-
ly in a number of scenarios, including image and video processing,
and data mining [1]. However, most of the current processing tech-
niques are developed for two-dimensional data [2]. The principal
component analysis (PCA) is one of the most widely used one in
two-dimensional data analysis [3].

The robust PCA (RPCA), as an extension of PCA, is an effective
method in matrix decomposition problems [4]. Suppose we have a
matrix X ∈ Rn1×n2 , which can be decomposed as X = L0+S0,
where L0 is the low rank component of the matrix and S0 is the s-
parse component. The RPCA method has been applied to image
alignment [5], surveillance video processing [6], illumination nor-
malization for face images [7]. In most applications, the RPCA
method should flatten or vectorize the tensor data so as to solve the
problem in the matrix. It doesn’t use the structural feature of the da-
ta effectively since the information loss involves in the operation of
matricization.

Tensor robust principal component analysis (TRPCA) has been
studied in [8, 9] based on the tensor singular value decomposition
(t-SVD). The advantage of t-SVD over the existing methods such
as canonical polyadic decomposition (CPD) [10] and Tucker de-
composition [11] is that the resulting analysis is very close to that

Fig. 1: Illustration of TRPCA.

of matrix analysis [12]. Similarly, suppose we are given a tensor
X ∈ Rn1×n2×n3 and it can be decomposed into low rank compo-
nent and sparse component. We can write it as

X = L0 + S0, (1)

where L0 denotes the low rank component, and S0 is the sparse
component of the tensor. Fig. 1 is the illustration for TRPCA. In [8]
the problem (1) is transformed to the convex optimization model:

min
L0,S0

∥L0∥∗ + λ∥S0∥1, s. t. X = L0 + S0, (2)

where ∥L0∥∗ is the tensor nuclear norm (see section 2 for the defi-
nition), ∥S0∥1 denotes the ℓ1-norm. In the paper [9] the problem (1)
is transformed to another convex optimization model as:

min
L0,S0

∥L0∥∗ + λ∥S0∥1,1,2, s. t. X = L0 + S0, (3)

where ∥S0∥1,1,2 is defined as Σi,j∥S0(i, j, :)∥F. The two methods
solve the tensor decomposition problem based on the t-SVD.

The low rank and sparse matrix decomposition has been im-
proved by the [13]. The main idea is incorporating multi-scale struc-
tures with low rank methods. The additional multi-scale structures
can obtain a more accurate representation than conventional low rank
methods. Inspired by this work, we notice that the sparse component
in matrix is block-distributed in some applications, e.g. shadow and
motion in videos. For these images we find it is more effective to
extract the low rank components in a another smaller scale of image
data. Here we try to extract low rank components in block tensor
data that is stacked by small scale of image data. And when we de-
compose the tensor data into many small blocks, it is easy to extract
the principal component in some blocks that have few sparse com-
ponents. We model our tensor data as the concatenation of block
tensors instead of solving the RPCA problem as a whole big tensor.
Fig. 2 is the illustration of concatenation of block tensors.

Based on the above motivation, we decompose the whole ten-
sor into concatenation of blocks of the same size, then we extract
low rank component of each block by minimizing the tubal rank of
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Fig. 2: Illustration of the concatenation of block tensors.

Fig. 3: Illustration of the block tensor decomposition model.

each block tensor. Fig. 3 is the illustration of our method. And we
get low rank component of the whole tensor by concatenating all the
low rank components of the block tensors. The proposed method
can be used to some conventional image processing problems, in-
cluding motion separation for surveillance videos (Section 4.1) and
illumination normalization for face images (Section 4.2). The results
of numerical experiments demonstrate that our method outperforms
the existing methods in term of accuracy.

2. NOTATIONS AND PRELIMINARIES

In this section, we describe the notations and definitions used
throughout the paper briefly [14, 15, 16, 17].

A third-order tensor is represented as A, and its (i, j, k)-th entry
is represented as Ai,j,k. A(i, j, :) denotes the (i, j)-th tubal scalar.
A(i, :, :), A(:, j, :) and A(:, :, k) are the i-th horizontal, j-th lateral

and k-th frontal slices, respectively.∥A∥F =
√∑

i,j,k |aijk|2 and

∥A∥∞ = maxi,j,k|aijk| tensor kinds of tensor norms.
We can view a three-dimensional tensor of size n1 × n2 × n3 as

an n1×n2 matrix of tubes. Â is a tensor which is obtained by taking
the fast Fourier transform (FFT) along the third mode of A. For a
compact notation we will use Â = fft (A, [], 3) to denote the FFT
along the third dimension. In the same way, we can also compute A
from Â using the inverse FFT (IFFT).

Definition 2.1 (t-product) [12] The t-product E = A ∗ B of
A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is an n1× n4× n3 tensor. The
(i, j)-th tube of E is given by

E(i, j, :) =
n2∑

k=1

A(i, k, :) • B(k, j, :), (4)

where • denotes the circular convolution between two tubes of same
size.

Definition 2.2 (conjugate transpose) [14] The conjugate trans-
pose of a tensor A of size n1 × n2 × n3 is the n2 × n1 × n3 tensor

AT obtained by conjugate transposing each of the frontal slice and
then reversing the order of transposed frontal slices from 2 to n3.

Definition 2.3 (identity tensor) [14] The identity tensor I ∈
Rn×n×n3 is a tensor whose first frontal slice is the n × n identity
matrix and all other frontal slices are zero.

Definition 2.4 (orthogonal tensor) [14] A tensor Q is orthogo-
nal if it satisfies

QT ∗ Q = Q ∗ QT = I. (5)

Definition 2.5 (f-diagonal tensor) [14] A tensor is called f-
diagonal if each of its frontal slices is a diagonal matrix.

Definition 2.6 (t-SVD) [14] For A ∈ Rn1×n2×n3 , the t-SVD of
A is given by

A = U ∗ S ∗ VT (6)
where U and V are orthogonal tensors of size n1×n1×n3 and n2×
n2×n3 respectively, and S is a f-diagonal tensor of size n1×n2×n3.

We can obtain this decomposition by computing matrix singu-
lar value decomposition (SVD) in the Fourier domain, as it shows
in Algorithm 1. Fig. 4 illustrates the decomposition for the three-
dimensional case.

Algorithm1 : t-SVD for 3-way data

Input: A ∈ Rn1×n2×n3

D ←fft(A,[],3),
for i = 1 to n3, do

[ U , S , V ] = svd(D(:, :, i)),
Û(:, :, i)=U, Ŝ(:, :, i))=S, V̂(:, :, i) =V,

end for
U ← ifft(Û ,[],3), S ← ifft(Ŝ,[],3), V ← ifft(V̂ ,[],3),
Output: U ,S,V
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Fig. 4: Illustration of the t-SVD of an n1 × n2 × n3 tensor.

Definition 2.7 (tensor multi-rank and tubal rank) [9] The ten-
sor multi-rank of A ∈ Rn1×n2×n3 is a vector r ∈ Rn3 with its
i-th entry as the rank of the i-th frontal slice of Â, i. e. ri =
rank(Â(:, :, i)). The tensor tubal rank, denoted by rankt(A), is
defined as the number of nonzero singular tubes of S, where S is
from A = U ∗ S ∗ VT, i. e.

rankt(A) = # {i : S(i,i,:) ̸= 0} = max
i

ri (7)

Definition 2.8 (tensor nuclear norm: TNN) [9] The tensor nu-
clear norm ofA ∈ Rn1×n2×n3 denoted by ∥A∥∗ is defined as the
sum of the singular values of all the frontal slices of Â. The TNN of
A is equal to the TNN of blkdiag(Â). Here blkdiag(Â) is a block
diagonal matrix defined as follows:

blkdiag(Â) =


Â(1)

Â(2)

. . .
Â(n3)

 , (8)
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where Â(i) is the i-th frontal slice of Â, i = 1, 2, ..., n3.
Definition 2.9 (standard tensor basis) [12] The column basis,

denoted as e̊i, is a tensor of size n × 1 × n3 with its (i,1,1)-th entry
equaling to 1 and the rest equaling to 0. Naturally its transpose e̊Ti
is called row basis.

3. ITERATIVE BLOCK TENSOR SINGULAR VALUE
THRESHOLDING

We decompose the whole tensor which satisfies the incoherence con-
ditions into many small blocks of the same size. And the third di-
mension of the block size should be the same as the third dimension
of the tensor. That is to say, given an input tensor X ∈ Rn1×n2×n3

and its corresponding block size, we propose a multi-block tensor
modeling that models the tensor dataX as the concatenation of block
tensors. And each block tensor can be decomposed into two compo-
nents, i.e. Xp = Lp + Sp, p = 1, · · · , P , where Lp and Sp denote
the low rank component and sparse component of block tensor Xp

respectively.
As observed in RPCA, the low rank and sparse decomposition

is impossible in some cases [4]. Similarly, we are not able to identi-
fy the low rank component and sparse component if the tensor is of
both low rank and sparsity. Similar to the tensor incoherence condi-
tions [8], we assume the block tensor data Lp in each block satisfies
some block tensor incoherence conditions to guarantee successful
low rank component extraction.

Definition 3.1 (block tensor incoherence conditions) For Lp ∈
Rn×n×n3 , assume that rankt(Lp) = r and it has the t-SVD Lp =
Up ∗ Sp ∗ VT

p , where Up ∈ Rn×r×n3 and Vp ∈ Rn×r×n3 satisfy
UT
p ∗ Up = I and VT

p ∗ Vp = I, and Sp ∈ Rr×r×n3 is an f-
diagonal tensor. Then Lp satisfies the tensor incoherence conditions
with parameter µ if

max
i=1,...,n

∥UT
p ∗ e̊i∥F 6

√
µr

nn3
(9)

max
j=1,...,n

∥VT
p ∗ e̊j∥F 6

√
µr

nn3
(10)

and

∥Up ∗ VT
p ∥∞ 6

√
µr

n2n2
3

(11)

The incoherence condition guarantees that for small values of µ, the
singular vectors are not sparse. Then the tensor Lp ∈ Rn×n×n3 can
be decomposed into low rank component and sparse component.

For extracting the low rank component from every block,
we process the tensor nuclear norm of Lp, i. e. ∥Lp∥TNN =

∥blkdiag(L̂p)∥∗. Here we can use singular value thresholding oper-
ator in the Fourier domain to extract the low rank component of the
block tensor [18, 19]. The proposed method is called iterative block
tensor singular value thresholding (IBTSVT). The thresholding
operator used here is the soft one Dτ as follows:

Dτ (Lp) = sign(blkdiag(L̂p))(|blkdiag(L̂p)| − τ)+, (12)

where “()+” keeps the positive part.
After we extract the low rank component L = L1 �L2 � · · ·�

LP , where � denotes concatenation operation, we can get the sparse
component of the tensor by computing the S = X − L. See Algo-
rithm 2 in details.

In our method, the block size can’t be too large. The large size
of the block will make the sparse part contain some low rank com-
ponent. And if the size of the block is too small, the computational

Algorithm 2: IBTSVT

Input: tensor data X ∈ Rn1×n2×n3

Initialize: given µ, η, ϵ, τ , and
block tensors Xp of size n× n× n3, p = 1, · · · , P
while not converged do
1. Update η := η × µ,
2. Update τ := τ/η,
3. Compute Xp := Dτ (Xp), p = 1, · · · , P .
end while:
∥Xk+1 −Xk∥F/∥Xk∥F ≤ ϵ at (k + 1)-th step.
Output: L = X1 � X2 � · · ·� XP

time will be long. Because the number of t-SVDs is large. Generally,
we can choose our block size 2× 2× n3.

In our algorithm, we choose µ = 1.8, η = 1, ϵ = 10−2. But
the thresholding parameter τ is difficult to determine. Here we can
get a value by experience. As discussed in [8], the thresholding pa-
rameter could be τ = 1/

√
nn3 for every block. This value is for

denoising problem in images or videos, where the noise is uniform-
ly distributed. But for different applications, it should be different
from 1/

√
nn3. Because in these applications, the sparse component

in data is not uniformly distributed, such as shadow in face images
and motion in surveillance videos.

4. EXPERIMENTAL RESULTS

In this section, we conduct numerical results to show the perfor-
mance of the method. We apply IBTSVT method on two different
real datasets that are conventionally used in low rank model: motion
separation for surveillance videos (Section 4.1) and illumination nor-
malization for face images (Section 4.2).

4.1. Motion Separation for Surveillance Videos

In surveillance video, the background only changes its brightness
over the time, and it can be represented as the low rank component.
And the foreground objects are the sparse component in videos. It
is often desired to extract the foreground objects from the video.
We use the proposed IBTSVT method to separate the foreground
component from the background one.

We use the surveillance video data used in [6]. Each frame is
of size 144 × 176 and we use 20 frames. The constructed tensor is
X ∈ R144×176×20 and the selected block size is 2 × 2 × 20. The
thresholding parameter is τ = 20/

√
nn3.

Fig. 5 shows one of the results. We can find that IBTSVT
method correctly recovers the background, while the sparse com-
ponent correctly identifies the moving pedestrians. It shows the pro-
posed method can realize motion separation for surveillance videos.

4.2. Illumination normalization for face images

The face recognition algorithms are sensitive to shadow or occlu-
sions on faces [7], and it’s important to remove illumination varia-
tions and shadow on the face images. The low rank model is often
used for face images [20].

In our experiments, we use the Yale B face database [7]. Each
face image is of size 192×168 with 64 different lighting conditions.
We construct the tensor dataX ∈ R192×168×64 and choose the block
size 2× 2× 64 . We set the thresholding parameter τ = 20/

√
nn3.
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Fig. 5: IBTSVT on a surveillance video. (a) original video; (b) low
rank component that is video background; (c) sparse component that
represents the foreground objects of video.

We compare the proposed method with multi-scale low rank ma-
trix decomposition method [13] and low rank + sparse method [4].
Fig. 6 shows one of the comparison results. The IBTSVT method
can result in almost shadow-free faces. In contrast, the other two
methods can only recover the faces with some shadow.

In order to further illustrate the effect of shadow elimination in
the recovered face images, we carry on face detection with the re-
covered data from different methods. In our experiments, we employ
the face detection algorithm Viola-Jones algorithm [21] to detect the
faces and the eyes. The Viola-Jones algorithm is a classical algorith-
m which can be used to detect people’s faces, noses, eyes, mouths,
and upper bodies. In the first experiment we put all face images in-
to one image of JPG format. Then we use the algorithm to detect
faces in the newly formed image. In the second experiment, we use
the algorithm to detect the eyes of every face image. The second and
third columns of Table 1 show the detection accuracy ratios of Viola-
Jones algorithm with different recovered face images. We test how
long the three methods process the 64 face images as can be seen in
the fourth column. The IBTSVT can improve the efficiency by par-
allel processing of the block tensors. From the result of Table 1, we
can find our method gives the best detection performance, because
removing shadow of face images is helpful for face detection.

face detection eye detection Time (s)
Original image 0.297 0.58 NULL
Low rank + sparsity 0.375 0.70 10
Multiscale low rank 0.359 1.00 4472
IBTSVT 0.844 1.00 715

Table 1: The accuracy ratios of faces and eyes detection by Viola-
Jones algorithm and the computational time to process face images.

5. CONCLUSIONS

In this paper, we proposed a novel IBTSVT method to extract the
low rank component of the tensor using t-SVD. The IBTSVT is a
good way to utilize the structural feature of tensor by solving TPCA
problem in block tensor form. We have given the tensor incoherence

Fig. 6: Three methods for face with uneven illumination: (a) original
faces with shadows; (b) low rank + sparse method; (c) multi-scale
low rank decomposition; (d) IBTSVT.

conditions for block tensor data. For applications, we considered
motion separation for surveillance videos and illumination normal-
ization for face images, and numerical experiments showed its per-
formance gains compared with the existing methods.
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