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ABSTRACT Most of the visual feature extraction methods, first, de-
tect spatio-temporal interest points (STIPs) and then coenp
Audio-visual recognition systems rely on efficient featurefeature descriptors within a volume, either around the STIP
extraction. Many spatio-temporal interest point detexfor  [5] or along trajectories formed by tracking those STIPs [6]
visual feature extraction are either too sparse, leadifgs®  However, there are a few limitations and problems assatiate
of information, or too dense resulting in noisy and redutidanwith available STIP detectors. Firstly, the detectors are e
information. Furthermore, interest point detectors destyj ther too sparse, leading to loss of information, or too dense
for a controlled environment can be affected by camera moresulting in irrelevant and redundant information and an in
tion. In this paper, a salient spatio-temporal interesnpoi crease in computation [7]. A good density of interest points
detector is proposed based on a low-rank and group-sparggn be realized by the fact that a detector should deteensali
matrix approximation. The detector handles the camera mQnterest points representing motion areas only. Secoimily,
tion through a short-window video stabilization. The multi case of dynamic background and moving camera, the detec-
modal audio-visual features from multiple descriptorsrape  tors may detect irrelevant interest points that do not teeton
resented by a super descriptor, from which a compact set @fctual motion. This is because the detectors are usually de-
features is extracted through a tensor decomposition and fesigned for a constrained environment where they target loca
ture selection. This tensor decomposition retains theiespat spatio-temporal information without considering globad-m
temporal structure among features obtained from multipte d tion [7]. To address these limitations, a STIP detector thase
scriptors. Experimental validation is conducted using twopn a low-rank and group-sparse (LRGS) matrix approxima-
benchmark human interaction recognition datasets: TVH|Q|on is designed, which can consider |0ng_term tempora| in-
and Parliament. Experimental results are presented whichteractions to extract salient interest points that are fieced
show that the proposed approach outperforms many state-qfy camera motion.
the-art methods, achieving classification rates of 74.7% an

88.5% on the TVHID andParliament datasets, respectively. The extracted multi-modal features from multiple feature

_ _ N ~ descriptors are usually represented by the Bow model, where
I ndex .Ter ms— Human Interaction recognition, spatio- |ocal features are first encoded, then the encoded multainod
temporal interest point detection, low-rank and grouprspa features are concatenated to form a single large feature vec

matrix approximation, tensor decomposition tor for classification [8, 9]. The concatenation of features
from multiple descriptors destroys the spatio-temponaicst
1. INTRODUCTION ture among the features. To address this problem, feature de

scriptors are arranged into a tensor (i.e., multi-dimemedio
array). This representation provides a natural way to metai
the spatio-temporal structure among the features. Them-a te
sor decomposition is applied to extract salient discrirtivea
features and remove redundant features to achieve dinmensio
ality reduction.

Exploiting multi-modal information (e.g., auditory and-vi
sual) can greatly improve the performance of recognitian sy
tems [1-4]. Audio-visual recognition methods have appeare
in different applications, including human interactiorcog-
nition [1, 2], action recognition [3] and event detectioh [A
general recognition system, first, extracts multi-modaliau
visual features using multiple descriptors, represerdsett The remainder of the paper is organized as follows. Sec-
tracted features using some bag-of-words (BoW) model, antion 2 describes multi-modal feature extraction and pressen
then performs recognition using a classifier. The approach new method for salient spatio-temporal interest poirgacet
presented here adapts a similar pipe-line, contributinthhéo tion. Section 3 presents a super descriptor tensor decompo-
first two components: visual feature extraction and multi-sition model for feature representation. Experimentalliss
modal feature representation. and analysis are given in Section 4. Finally, Section 5 con-
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cludes the paper. where|-|| - denotes the Frobenius norf|, , is a mixedés ;
norm, A is a regularization parameter to control the sparsity

2. MULTI-MODAL FEATURE EXTRACTION in ', andR represents an upper bound on the ranBofThe
This section describes the auditory and visual features en@Ptimization problem in (3) is divided into two sub-problem
ployed here for human interaction recognition. [16] which are solved alternately:

2.1. Audio feature extraction B =min |® — B~ F|%, s.t.rank(B) <R, 4)

The typical audio feature extraction methods include zero-
crossing [10], linear predictive coding [11], and mel-fueqcy
cepstral coefficients (MFCC) [12]. Although, any of these A greedy alternating minimization approach is used to
methods can be used in our recognition system, here Wg\ye the two sub-problems (4) and (5). By the singular value
employ MFCC. features along with the|r first and Secp_”ddecomposition ofb — F we have(® — F) = USVT, where
derivatives, which are commonly used in speech recognitiony; and v are matrices of left and right singular vectors, re-
The MFCCs are computed within short audio frames W'thspectively, and® is a diagonal matrix of singular values.

F=min|o—B—F2+\|Fl,,- ()

some overlap. The matrixB in (4) can be approximated by the firstiomi-
2.2. Visual feature extraction nant singular components,

To extract visual features, firstly the STIPs are detectatus r

the proposed detector (described in Subsection 2.2.1): Sec B = Z oUVi", r<R. (6)
ondly, the detected interest points are tracked up frames =1

using optical flow to form motion trajectories. Finally, his
togram of oriented gradient (HOG) and motion boundary his
togram (MBH) descriptors are computed along the trajecto
ries. The trajectory formation and descriptor computasioa

adapted from [6]. )
) o To solve sub-problem (5), a soft-thresholding based
2.2.1. STIP detector based on LRGS matrix approximation shrinkage operation is applied to approximdte Let &;

In this subsection, a new STIP detector based on LRGS Mafenote theéth column of® — B. Theith column of matrixF,
trix approximation is proposed. For a video, spatial ingére r s obtained as,
points (SIPs) are detected in each frame, using FAST corners

Starting fromr = 1, the value ofr is incremented by 1 at
each iteration by checking the contribution of last singula
value against the rest, {&./>"._, 0;) is greater than some
threshold, them = r + 1; otherwise, the iteration stops.

A
[13], Canny edges [14], and SURF features [15]. A set of F;=¢;. max(o, 1= ) . @)
salient STIPs is then detected by considering long-term tem 1l
poral interactions based on a LRGS matrix approximation. Ateach iteration, an errdi® — B — F||% /”q)”% is com-

Each frame is first scanned for the detected SIPs, Uguted. The alternating minimization terminates if the erro
ing row-wise, column-wise or zig-zag scanning. The Suchecomes less than a threshelor the number of iterations
ceedingL — 1 frames are then realigned with the scannedeaches a maximum set number of iterations. Each column in
frame so as to compensate for global camera motion— corresponds to a SIP. If a column Ihis zero, the corre-
we refer to this as short-window video stabilization (de'sponding SIP belongs to static background, and if the column
scribed in Subsection 2.2.2). For theh SIP detected s non-zero, the SIP belongs to moving foreground. The ex-

at pixel (z;,y;), an L-dimensional column vectow; is  tracted foreground SIPs form the desired STIPs.
formed, which contains the pixel valud$z;,y;) in the L

frames,v; = [I(z;,v:,t5)], j = 0,1,...,L — 1. Next 222. Short-window video stabilization

a matrix ¢ & R¥*N is formed using all the SIP vectors |n the case of camera motion, there can be many unwanted

Vi, i =1,2,..., N, as columns, STIPs. To solve this problem, the video frames are spatially
® = [v1,Va, ..., Vn]. (1)  aligned on short-window bases by estimating global motion.

For a framet,, the subsequent frames+ 1toty + L — 1

are aligned with it by matching previously extracted SURF

points. The SURF descriptors are computed for the SURF
®=B+F+N\, (2) points, and the locations of the corresponding points in two
frames are retrieved by matching their SURF descriptors.
An affine transformation corresponding to the matched point
%airs is calculated using M-estimator SAmple Consensus al-
gorithm [17]. Using the estimated geometric transfornmatio

_ ) the two frames are aligned. This stabilizes the background
min [©=B—F|+AlFly;, st.rank(B) < R, (3)  within a short-window using the global motion.

We consider the decomposition &f into low-rank and
group-sparse components in presence of noise, as follows:

whereB is a low-rank matrix,F' is group-sparse matrix, and
N represents additive noise. Based on the low-rank and grou
sparsity constraints, the following objective functiortasbe
minimized:

1848



3. SUPER DESCRIPTOR TENSOR Minimizing the cost function in (10) is equivalent to maxi-
DECOMPOSITION mizing over the matrice& (P) the function [20],

In this section, a super descriptor tensor decomposition J(U®) = X x; UD T x, UP T x, UG 7|2, (13)
(SDTD) model is presented to represent multi-modal feat r7(») js fixed, the tensoK can be projected onto the sub-
tures from multiple descriptors. The descriptors are eadod gpace defined as,
and arranged in the form of tensors in order to retain the (=p) _ ()T @ & T
spatio-temporal structure among the features. The teasers W =Xx U X2 U <3 U
decomposed using TUCKER-3 decomposition followed by =X X_(pa) {u'y,
Fisher ranking [18] to obtain salient features for clasatfan.  wherex _, 4) represents the multiplication excluding mode-

3.1. Tensor Decomposition p and mode-4. The factofg(?) can be estimated ak which

Local audio-visual descriptors, namely MFCC, HOG andarﬂe)ading left vectors of the mogematricized version of

MBH, are encoded using super descriptor vector (SDV) codW(,)”’- Once the basis factofs(*) are obtained, a test fea-
ing [19]. The SDV encoded features are then arranged into tre core tensof' for a test tensoX’ can be obtained as
K x M matrix, whereK refers to the dictionary size in SDV G' = X' x {UT'}.

coding and)M is the dimension of the feature vectors. For
P different feature descriptors (i.e., MFCC, HOG, MBHx
and MBHYy), the resultani x M matrices are arranged as
a rank-3 tensor. For each video segment, a super descrip

(14)

3.2. Feature Selection and Classification

Itis likely that some discriminative features will be lokthe
t%i,ze of the core tensor is set too small during the tensor de-
tensor of size x M x P is obtained composition. But avoiding feature loss will lead to a large

The tensor decomposition is employed to discard th&ore tensor and inefficient classification. To solve thisopro
noisy and redundant features. Assume a training sep of lem, the salient features for classification are select@tus
rank-3 tensor’ € R KxMxP ;i — 1.2 Q. The ten- Fisher ranking. The features are sorted in a descending or-

sor decomposition oK' to get three basis factord() ¢ der of their Fisher score. The top features that can achieve
R KxJi_A(R) ¢ R MxJ2 gnd A®) ¢ R PxJs and a core the highest classification accuracy are selected through ex
’ perimentation. For the classification, a one-vs-the-iasffr

feature tensofs’ € R 71%72xJs of total .J; .J».J5 features, is .
SVM is used.

given as,
X G xp AW g AP x5 AB) ®) 4. RESULTS AND ANALYSIS

Whttar.ex',:,, p= 172’|3’ :;E‘?_méd? produgt:(l‘l?t_ensor by a The proposed STIP detector (i.e., LRGS-STIP) and multi-
matfix. For example, = {9j1gaa } AN = law. ], modal feature representation model (i.e., SDTD) are tested

; oy ol o _ two publicly available datasets: TV human interaction data
(G" <1 Aoy = D Girias @i (9 (TVHID) [21] and Parliament [22]. For the sake of fair com-
=l parison, we adopt the same evaluation protocols as in [21]
The basis factorl*) can be obtained by minimizing the fol- ang [22]; that is, ten-fold and five-fold cross-validatiore a
lowing cost func'%on, employed with datasets TVHID arRérliament, respectively.

We setR = 15 ande = 0.001. These values work for both
datasets. The parameteis tuned separately for each dataset:
it is set toA = 0.03 for TVHID and A = 0.05 for Parliament.
he SIPs are tracked up o = 15 frames. For the trajec-
o tory and descriptor computation, the same settings are used
composition: : : : .
~ 0 @ 3) as in [6]. From each trajectory and audio frame, a ninety-
X~ G xyp A X3 A x5 A, A1) six (M = 96) dimensional feature vector is calculated for
where the tensop§ € R K*M*PxQ andG € R /1x72xJ:xQ@  gach descriptor (i.e., MEFCC, HOG, MBHx and MBHYy). For
are rank-4 tensors obtained by concatenating all the tensosDV coding, the dictionary size is set100, which is suitable
X" andG" along mode-4. This decomposition model is calledfor a wide range of datasets [19]. Therefore, a tensor of size
the TUCKER-3 tensor decomposition. For a more detailed00 x 96 x 4 is obtained for each video sample. We test dif-
mathematical description, see [18]. ferent tensor decomposition algorithms (i.e., higher pdile
To find the basis factors, higher order orthogonal intercriminant analysis (HODA) and HOOI) and feature ranking
actions (HOOI) [20] algorithm is used. The orthogonal in-criteria (i.e., Student’s t-test, mutual information aridher
teractive basis factors are estimated48 = U® of the  ranking). From experiments, the TUCKER-3 decomposition
TUCKER-3 decomposition of the training tens¢r First, the  with HOOI algorithm and Fisher feature ranking give the best
factorsU (") are randomly initialized so that the training core classification accuracy.
tensorG can be obtained, In the first experiment, performance of the LRGS-STIP
G=Xx  UDT x, AT, BT, (12)  detector is compared with Harris3D [5] and dense sampling

D IX=Gix A AR AG T (10)
i =1

The @ simultaneous standard decompositions of rank-
tensorsX® in (8) are equivalent to the following tensor de-

min
{AM), AR AB))
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Table 2 Average CRs and standard error in % of the SDTD

[6] methods. For the three methods, the trajectories and denethod and different feature representation methods (i.e.
scriptors are computed from the STIPs found by their respeq-| C [8], FV [9] and SDV [19)).

tive detectors. The descriptors are encoded using SDV, and p— o = ol <3
the enCOded features are Concatenated’ tO Obtain a Sir[gle ve (f = 3500,2500) | (f =2000) | (f=192000) | (f=192000) | (f = 3500,2500)
tor for classification. The audio features and tensor decemp | TvHiD 747405 | 723411 73.0+£09 | 737408 | 692+13
sition are not used in this experiment. The classificatiogsra [ Paliament | 88503 | 853+08 | 865:05 | 87206 | 80.0£09

(CR) of the LRGS-STIP, Harris3D and dense sampling meth-
ods are presented in Table 1. The LRGS-STIP achieves ay- ; :

TIP + SDTD h h hods for hu-
erage CRs of 67.3% on TVHID and 83.7% Barliament; it s S ) is compared with some other methods for hu

. ) man interaction recognition task. The other methods use dif
outperforms both the Harris3D and dense sampling method§ rent type of features (i.e., audio-visual and visual rihe

Thle Har;|§3fD IS ?. sp.a_:se ggtector, which g]gy hfazf Br((?/su“ifRs of the proposed approach and other methods are given in
N 10SS of Information, It achieves average LiRs of #.1.6%0 aNGyp1e 3 The CRs of the other methods are directly taken

73.8%. The dense sampling results in too many STIPs Wh'CEom the references shown in the table. The LRGS-STIP +

increases the number of noisy features and computation. Al
. . . DTD approach outperforms most of the other methods on
though the dense sampling achieves higher CRs than the Hqﬁ bp P

. : . 'e TVHID andParliament datasets, when using audio-visual
ris3D detector (53.4% and 79.2%), its CRs are still mucl'(L:l : :

; nd visual only features. Only the SAVAR [2] method, which
lower than those of LRGS-STIP. The Harris3D and dens VIsU y . y [2] i

: . . @xtracts more features such as head orientation and proxemi
sampling do not take into account the camera motion and r

Butperforms our proposed method.
sult in many irrelevant STIPs which may have affected their P prop

CRs. On the other hand, the LRGS-STIP considers long-terfgPl€ 3= Average CRs in % of the proposed LRGS-STIP +
temporal interactions and extracts a salient set of STIPs beD1D and other methods.

longing to actual motion, and hence achieves the highest CRs TVHID Parliament
. Methods CR | Featurestype| CR | Features type
Table 1. Average (;Rs and standard errorin % ofthe proposed o~ — 2] 4.7 Visual ® TR yP
LRGS-STIP, Harris3D [5] and dense sampling [6] detectors. Yuetal [23] 66.2 | Visual NA | NA
LRGS-STIP | Harris3D | Dense Sampling Li etal. [24] 68.0 | Visual NA | NA
TVHID 67.3+0.3 | 41.8+1.2 53.4+ 0.6 Marin etal. [1] 54.5 | Audio-visual | NA | NA
Parliament | 83.7+0.2 | 73.84+0.6 79.2+0.3 SAVAR [2] 81.3 | Audio-visual | 97.6 | Audio-visual
Vrigkas et al. [22] NA | NA 85.5 | Visual
In the second experiment, the proposed SDTD model is | LRGS-STIP + SDTD | 69.1 | Visual 83.7 | Visual
compared with three other feature representation methods: | LRGS-STIP + SDTD | 74.7 | Audio-visual | 88.5 | Audio-visual

LLC [8], FV [9] and SDV [19]. Both audio and visual features

are used in this experiment. For the LLC, FV and SDV-1, the 5. CONCLUSION

dictionary size is set to 500, and the feature descriptars aiThis paper presents a new spatio-temporal interest point de
concatenated to form a large single vector for classifigatio tector based on a low-rank and group-sparse matrix approx-
For the SDTD model, a salient set of features is extracted aft imation. The proposed detector extracts a salient set of in-
the tensor decomposition and Fisher ranking. For the SDMerest points by taking into account long-term temporal in-
2, the same number of features are selected as in SDTD, hgractions and camera motion. The experiments show that
applying only Fisher ranking without tensor decomposition the proposed detector outperforms some existing detectors
The total number of featureSused for classification and the The multi-modal audio-visual features from multiple déscr
classification results of each method are shown in Table Zors are represented by a super descriptor tensor decomposi
Among the existing methods, SDV-1 outperforms LLC, FVtion model, in order to retain spatio-temporal structur@am
and SDV-2 on both TVHID andParliament datasets. How- features and obtain more discriminative features for diass
ever, the proposed SDTD method outperforms all other metheation. The tensor decomposition followed by Fisher rank-
ods; it achieves the highest CRs of 74.7% and 88.5% on thieag discards the noisy and redundant features. In compariso
two datasets. The SDTD retains the spatio-temporal sireictuwith other feature representation methods, the proposed te
among features from multiple descriptors, which is usuallysor decomposition model achieves a significant reduction in
destroyed if the features are concatenated. The tensomdecofeatures along with a higher classification rate. Furtheeno
position discards the noisy and redundant features which cahe overall proposed audio-visual recognition system emutp
affect the classifier accuracy. Although the CR of SDTD isforms many existing methods on the same task of human in-
only slightly higher than that of SDV-1, a significant reduc- teraction recognition.

tion in the feature dimension is achieved by the SDTD model:

the number of features are reduced from 192000 to 3500 al"ACkf'IOW'edg ment

2500 for the two datasets. This work has been supported in part by a grant from the Aus-
In the last experiment, the proposed pipe-line (i.e, LRGStralian Research Council.
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