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ABSTRACT

Audio-visual recognition systems rely on efficient feature
extraction. Many spatio-temporal interest point detectors for
visual feature extraction are either too sparse, leading toloss
of information, or too dense resulting in noisy and redundant
information. Furthermore, interest point detectors designed
for a controlled environment can be affected by camera mo-
tion. In this paper, a salient spatio-temporal interest point
detector is proposed based on a low-rank and group-sparse
matrix approximation. The detector handles the camera mo-
tion through a short-window video stabilization. The multi-
modal audio-visual features from multiple descriptors arerep-
resented by a super descriptor, from which a compact set of
features is extracted through a tensor decomposition and fea-
ture selection. This tensor decomposition retains the spatio-
temporal structure among features obtained from multiple de-
scriptors. Experimental validation is conducted using two
benchmark human interaction recognition datasets: TVHID
and Parliament. Experimental results are presented which
show that the proposed approach outperforms many state-of-
the-art methods, achieving classification rates of 74.7% and
88.5% on the TVHID andParliament datasets, respectively.

Index Terms— Human interaction recognition, spatio-
temporal interest point detection, low-rank and group-sparse
matrix approximation, tensor decomposition

1. INTRODUCTION

Exploiting multi-modal information (e.g., auditory and vi-
sual) can greatly improve the performance of recognition sys-
tems [1–4]. Audio-visual recognition methods have appeared
in different applications, including human interaction recog-
nition [1, 2], action recognition [3] and event detection [4]. A
general recognition system, first, extracts multi-modal audio-
visual features using multiple descriptors, represents the ex-
tracted features using some bag-of-words (BoW) model, and
then performs recognition using a classifier. The approach
presented here adapts a similar pipe-line, contributing tothe
first two components: visual feature extraction and multi-
modal feature representation.

Most of the visual feature extraction methods, first, de-
tect spatio-temporal interest points (STIPs) and then compute
feature descriptors within a volume, either around the STIPs
[5] or along trajectories formed by tracking those STIPs [6].
However, there are a few limitations and problems associated
with available STIP detectors. Firstly, the detectors are ei-
ther too sparse, leading to loss of information, or too dense,
resulting in irrelevant and redundant information and an in-
crease in computation [7]. A good density of interest points
can be realized by the fact that a detector should detect salient
interest points representing motion areas only. Secondly,in
case of dynamic background and moving camera, the detec-
tors may detect irrelevant interest points that do not belong to
actual motion. This is because the detectors are usually de-
signed for a constrained environment where they target local
spatio-temporal information without considering global mo-
tion [7]. To address these limitations, a STIP detector based
on a low-rank and group-sparse (LRGS) matrix approxima-
tion is designed, which can consider long-term temporal in-
teractions to extract salient interest points that are not affected
by camera motion.

The extracted multi-modal features from multiple feature
descriptors are usually represented by the BoW model, where
local features are first encoded, then the encoded multi-modal
features are concatenated to form a single large feature vec-
tor for classification [8, 9]. The concatenation of features
from multiple descriptors destroys the spatio-temporal struc-
ture among the features. To address this problem, feature de-
scriptors are arranged into a tensor (i.e., multi-dimensional
array). This representation provides a natural way to retain
the spatio-temporal structure among the features. Then a ten-
sor decomposition is applied to extract salient discriminative
features and remove redundant features to achieve dimension-
ality reduction.

The remainder of the paper is organized as follows. Sec-
tion 2 describes multi-modal feature extraction and presents
a new method for salient spatio-temporal interest point detec-
tion. Section 3 presents a super descriptor tensor decompo-
sition model for feature representation. Experimental results
and analysis are given in Section 4. Finally, Section 5 con-
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cludes the paper.

2. MULTI-MODAL FEATURE EXTRACTION

This section describes the auditory and visual features em-
ployed here for human interaction recognition.

2.1. Audio feature extraction
The typical audio feature extraction methods include zero-
crossing [10], linear predictive coding [11], and mel-frequency
cepstral coefficients (MFCC) [12]. Although, any of these
methods can be used in our recognition system, here we
employ MFCC features along with their first and second
derivatives, which are commonly used in speech recognition.
The MFCCs are computed within short audio frames with
some overlap.

2.2. Visual feature extraction
To extract visual features, firstly the STIPs are detected using
the proposed detector (described in Subsection 2.2.1). Sec-
ondly, the detected interest points are tracked up toL frames
using optical flow to form motion trajectories. Finally, his-
togram of oriented gradient (HOG) and motion boundary his-
togram (MBH) descriptors are computed along the trajecto-
ries. The trajectory formation and descriptor computationare
adapted from [6].

2.2.1. STIP detector based on LRGS matrix approximation
In this subsection, a new STIP detector based on LRGS ma-
trix approximation is proposed. For a video, spatial interest
points (SIPs) are detected in each frame, using FAST corners
[13], Canny edges [14], and SURF features [15]. A set of
salient STIPs is then detected by considering long-term tem-
poral interactions based on a LRGS matrix approximation.

Each frame is first scanned for the detected SIPs, us-
ing row-wise, column-wise or zig-zag scanning. The suc-
ceedingL − 1 frames are then realigned with the scanned
frame so as to compensate for global camera motion—
we refer to this as short-window video stabilization (de-
scribed in Subsection 2.2.2). For theith SIP detected
at pixel (xi, yi), an L-dimensional column vectorvi is
formed, which contains the pixel valuesI(xi, yi) in the L
frames, vi = [I(xi, yi, tj)], j = 0, 1, ..., L − 1. Next
a matrix Φ ∈ R

L×N is formed using all the SIP vectors
vi, i = 1, 2, ..., N , as columns,

Φ = [v1, v2, ..., vN ]. (1)

We consider the decomposition ofΦ into low-rank and
group-sparse components in presence of noise, as follows:

(2)Φ = B + F + ℵ,

whereB is a low-rank matrix,F is group-sparse matrix, and
ℵ represents additive noise. Based on the low-rank and group-
sparsity constraints, the following objective function isto be
minimized:

(3)min
B,F

‖Φ−B−F‖
2
F + λ ‖F‖2,1 , s.t. rank(B) ≤ R,

where‖·‖F denotes the Frobenius norm,‖·‖2,1 is a mixedℓ2,1
norm,λ is a regularization parameter to control the sparsity
in F , andR represents an upper bound on the rank ofB. The
optimization problem in (3) is divided into two sub-problems
[16] which are solved alternately:

B = min
B

‖Φ−B − F‖
2
F , s.t. rank(B) ≤ R, (4)

F = min
F

‖Φ−B − F‖
2
F + λ ‖F‖2,1 . (5)

A greedy alternating minimization approach is used to
solve the two sub-problems (4) and (5). By the singular value
decomposition ofΦ−F we have,(Φ−F ) = UΣV T , where
U andV are matrices of left and right singular vectors, re-
spectively, andΣ is a diagonal matrix of singular valuesσi.
The matrixB in (4) can be approximated by the firstr domi-
nant singular components,

B =

r
∑

i=1

σiUiV
T
i , r ≤ R. (6)

Starting fromr = 1, the value ofr is incremented by 1 at
each iteration by checking the contribution of last singular
value against the rest, if(σr/

∑r
i=1 σi) is greater than some

threshold, thenr = r + 1; otherwise, the iteration stops.
To solve sub-problem (5), a soft-thresholding based

shrinkage operation is applied to approximateF . Let φi

denote theith column ofΦ−B. Theith column of matrixF ,
Fi is obtained as,

Fi = φi . max

(

0, 1−
λ

‖φi‖2

)

. (7)

At each iteration, an error‖Φ−B − F‖
2
F /‖Φ‖

2
F is com-

puted. The alternating minimization terminates if the error
becomes less than a thresholdǫ or the number of iterations
reaches a maximum set number of iterations. Each column in
F corresponds to a SIP. If a column inF is zero, the corre-
sponding SIP belongs to static background, and if the column
is non-zero, the SIP belongs to moving foreground. The ex-
tracted foreground SIPs form the desired STIPs.

2.2.2. Short-window video stabilization

In the case of camera motion, there can be many unwanted
STIPs. To solve this problem, the video frames are spatially
aligned on short-window bases by estimating global motion.
For a framet0, the subsequent framest1 + 1 to t0 + L − 1
are aligned with it by matching previously extracted SURF
points. The SURF descriptors are computed for the SURF
points, and the locations of the corresponding points in two
frames are retrieved by matching their SURF descriptors.
An affine transformation corresponding to the matched point
pairs is calculated using M-estimator SAmple Consensus al-
gorithm [17]. Using the estimated geometric transformation,
the two frames are aligned. This stabilizes the background
within a short-window using the global motion.
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3. SUPER DESCRIPTOR TENSOR
DECOMPOSITION

In this section, a super descriptor tensor decomposition
(SDTD) model is presented to represent multi-modal fea-
tures from multiple descriptors. The descriptors are encoded
and arranged in the form of tensors in order to retain the
spatio-temporal structure among the features. The tensorsare
decomposed using TUCKER-3 decomposition followed by
Fisher ranking [18] to obtain salient features for classification.

3.1. Tensor Decomposition
Local audio-visual descriptors, namely MFCC, HOG and
MBH, are encoded using super descriptor vector (SDV) cod-
ing [19]. The SDV encoded features are then arranged into a
K ×M matrix, whereK refers to the dictionary size in SDV
coding andM is the dimension of the feature vectors. For
P different feature descriptors (i.e., MFCC, HOG, MBHx
and MBHy), the resultantK × M matrices are arranged as
a rank-3 tensor. For each video segment, a super descriptor
tensor of sizeK ×M × P is obtained.

The tensor decomposition is employed to discard the
noisy and redundant features. Assume a training set ofQ
rank-3 tensorsXi ∈ R

K×M×P , i = 1, 2, ..., Q. The ten-
sor decomposition ofXi to get three basis factorsA(1) ∈
R

K×J1 , A(2) ∈ R
M×J2 andA(3) ∈ R

P×J3 and a core
feature tensorGi ∈ R

J1×J2×J3 of total J1J2J3 features, is
given as,

(8)Xi ≈ Gi ×1 A
(1) ×2 A

(2) ×3 A
(3),

where×p, p = 1, 2, 3, is thep-mode product of a tensor by a
matrix. For example, letGi = {gj1,j2,j3} andA(1) = [ak,j1 ],

(9)(Gi ×1 A
(1))k,j2,j3 =

J1
∑

j1=1

gj1,j2,j3 ak,j1 ,

The basis factorA(p) can be obtained by minimizing the fol-
lowing cost function,

(10)min
{A(1),A(2),A(3)}

Q
∑

i =1

‖Xi−Gi×1A
(1)×2A

(2)×3A
(3)‖2F .

The Q simultaneous standard decompositions of rank-3
tensorsXi in (8) are equivalent to the following tensor de-
composition:

(11)X ≈ G ×1 A
(1) ×2 A

(2) ×3 A
(3),

where the tensorsX ∈ R
K×M×P×Q andG ∈ R

J1×J2×J3×Q

are rank-4 tensors obtained by concatenating all the tensors
Xi andGi along mode-4. This decomposition model is called
the TUCKER-3 tensor decomposition. For a more detailed
mathematical description, see [18].

To find the basis factors, higher order orthogonal inter-
actions (HOOI) [20] algorithm is used. The orthogonal in-
teractive basis factors are estimated asA(p) = U (p) of the
TUCKER-3 decomposition of the training tensorX. First, the
factorsU (p) are randomly initialized so that the training core
tensorG can be obtained,

(12)G = X ×1 U
(1) T ×2 U

(2) T ×3 U
(3) T .

Minimizing the cost function in (10) is equivalent to maxi-
mizing over the matricesU (p) the function [20],

(13)J(U (p)) = ‖X ×1 U
(1) T ×2 U

(2) T ×3 U
(3) T ‖2F ,

If U (p) is fixed, the tensorX can be projected onto the sub-
space defined as,

(14)W(−p) = X ×1 U
(1) T ×2 U

(2) T ×3 U
(3) T

= X ×−(p,4) {U
T },

where×−(p,4) represents the multiplication excluding mode-
p and mode-4. The factorsU (p) can be estimated asJp which
are leading left vectors of the mode-p matricized version of
W

(−p)
(p) . Once the basis factorsU (p) are obtained, a test fea-

ture core tensorGt for a test tensorXt can be obtained as
Gt = Xt × {UT }.

3.2. Feature Selection and Classification
It is likely that some discriminative features will be lost if the
size of the core tensor is set too small during the tensor de-
composition. But avoiding feature loss will lead to a large
core tensor and inefficient classification. To solve this prob-
lem, the salient features for classification are selected using
Fisher ranking. The features are sorted in a descending or-
der of their Fisher score. The top features that can achieve
the highest classification accuracy are selected through ex-
perimentation. For the classification, a one-vs-the-rest linear
SVM is used.

4. RESULTS AND ANALYSIS

The proposed STIP detector (i.e., LRGS-STIP) and multi-
modal feature representation model (i.e., SDTD) are testedon
two publicly available datasets: TV human interaction dataset
(TVHID) [21] and Parliament [22]. For the sake of fair com-
parison, we adopt the same evaluation protocols as in [21]
and [22]; that is, ten-fold and five-fold cross-validation are
employed with datasets TVHID andParliament, respectively.
We setR = 15 andǫ = 0.001. These values work for both
datasets. The parameterλ is tuned separately for each dataset:
it is set toλ = 0.03 for TVHID andλ = 0.05 for Parliament.
The SIPs are tracked up toL = 15 frames. For the trajec-
tory and descriptor computation, the same settings are used
as in [6]. From each trajectory and audio frame, a ninety-
six (M = 96) dimensional feature vector is calculated for
each descriptor (i.e., MFCC, HOG, MBHx and MBHy). For
SDV coding, the dictionary size is set to500, which is suitable
for a wide range of datasets [19]. Therefore, a tensor of size
500× 96× 4 is obtained for each video sample. We test dif-
ferent tensor decomposition algorithms (i.e., higher order dis-
criminant analysis (HODA) and HOOI) and feature ranking
criteria (i.e., Student’s t-test, mutual information and Fisher
ranking). From experiments, the TUCKER-3 decomposition
with HOOI algorithm and Fisher feature ranking give the best
classification accuracy.

In the first experiment, performance of the LRGS-STIP
detector is compared with Harris3D [5] and dense sampling
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[6] methods. For the three methods, the trajectories and de-
scriptors are computed from the STIPs found by their respec-
tive detectors. The descriptors are encoded using SDV, and
the encoded features are concatenated, to obtain a single vec-
tor for classification. The audio features and tensor decompo-
sition are not used in this experiment. The classification rates
(CR) of the LRGS-STIP, Harris3D and dense sampling meth-
ods are presented in Table 1. The LRGS-STIP achieves av-
erage CRs of 67.3% on TVHID and 83.7% onParliament; it
outperforms both the Harris3D and dense sampling methods.
The Harris3D is a sparse detector, which may have resulted
in loss of information; it achieves average CRs of 41.8% and
73.8%. The dense sampling results in too many STIPs which
increases the number of noisy features and computation. Al-
though the dense sampling achieves higher CRs than the Har-
ris3D detector (53.4% and 79.2%), its CRs are still much
lower than those of LRGS-STIP. The Harris3D and dense
sampling do not take into account the camera motion and re-
sult in many irrelevant STIPs which may have affected their
CRs. On the other hand, the LRGS-STIP considers long-term
temporal interactions and extracts a salient set of STIPs be-
longing to actual motion, and hence achieves the highest CRs.

Table 1: Average CRs and standard error in % of the proposed
LRGS-STIP, Harris3D [5] and dense sampling [6] detectors.

LRGS-STIP Harris3D Dense Sampling

TVHID 67.3± 0.3 41.8± 1.2 53.4± 0.6

Parliament 83.7± 0.2 73.8± 0.6 79.2± 0.3

In the second experiment, the proposed SDTD model is
compared with three other feature representation methods:
LLC [8], FV [9] and SDV [19]. Both audio and visual features
are used in this experiment. For the LLC, FV and SDV-1, the
dictionary size is set to 500, and the feature descriptors are
concatenated to form a large single vector for classification.
For the SDTD model, a salient set of features is extracted after
the tensor decomposition and Fisher ranking. For the SDV-
2, the same number of features are selected as in SDTD, by
applying only Fisher ranking without tensor decomposition.
The total number of featuresf used for classification and the
classification results of each method are shown in Table 2.
Among the existing methods, SDV-1 outperforms LLC, FV
and SDV-2 on both TVHID andParliament datasets. How-
ever, the proposed SDTD method outperforms all other meth-
ods; it achieves the highest CRs of 74.7% and 88.5% on the
two datasets. The SDTD retains the spatio-temporal structure
among features from multiple descriptors, which is usually
destroyed if the features are concatenated. The tensor decom-
position discards the noisy and redundant features which can
affect the classifier accuracy. Although the CR of SDTD is
only slightly higher than that of SDV-1, a significant reduc-
tion in the feature dimension is achieved by the SDTD model:
the number of features are reduced from 192000 to 3500 and
2500 for the two datasets.

In the last experiment, the proposed pipe-line (i.e, LRGS-

Table 2: Average CRs and standard error in % of the SDTD
method and different feature representation methods (i.e.,
LLC [8], FV [9] and SDV [19]).

SDTD LLC FV SDV-1 SDV-2

(f = 3500, 2500) (f = 2000) (f = 192000) (f = 192000) (f = 3500, 2500)

TVHID 74.7± 0.5 72.3± 1.1 73.0± 0.9 73.7± 0.8 69.2± 1.3

Parliament 88.5± 0.3 85.3± 0.8 86.5± 0.5 87.2± 0.6 80.0± 0.9

STIP + SDTD) is compared with some other methods for hu-
man interaction recognition task. The other methods use dif-
ferent type of features (i.e., audio-visual and visual only). The
CRs of the proposed approach and other methods are given in
Table 3. The CRs of the other methods are directly taken
from the references shown in the table. The LRGS-STIP +
SDTD approach outperforms most of the other methods on
the TVHID andParliament datasets, when using audio-visual
and visual only features. Only the SAVAR [2] method, which
extracts more features such as head orientation and proxemic,
outperforms our proposed method.

Table 3: Average CRs in % of the proposed LRGS-STIP +
SDTD and other methods.

TVHID Parliament

Methods CR Features type CR Features type

Patron et al. [21] 54.7 Visual NA NA

Yu et al. [23] 66.2 Visual NA NA

Li et al. [24] 68.0 Visual NA NA

Marin et al. [1] 54.5 Audio-visual NA NA

SAVAR [2] 81.3 Audio-visual 97.6 Audio-visual

Vrigkas et al. [22] NA NA 85.5 Visual

LRGS-STIP + SDTD 69.1 Visual 83.7 Visual

LRGS-STIP + SDTD 74.7 Audio-visual 88.5 Audio-visual

5. CONCLUSION

This paper presents a new spatio-temporal interest point de-
tector based on a low-rank and group-sparse matrix approx-
imation. The proposed detector extracts a salient set of in-
terest points by taking into account long-term temporal in-
teractions and camera motion. The experiments show that
the proposed detector outperforms some existing detectors.
The multi-modal audio-visual features from multiple descrip-
tors are represented by a super descriptor tensor decomposi-
tion model, in order to retain spatio-temporal structure among
features and obtain more discriminative features for classifi-
cation. The tensor decomposition followed by Fisher rank-
ing discards the noisy and redundant features. In comparison
with other feature representation methods, the proposed ten-
sor decomposition model achieves a significant reduction in
features along with a higher classification rate. Furthermore,
the overall proposed audio-visual recognition system outper-
forms many existing methods on the same task of human in-
teraction recognition.
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