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ABSTRACT 

 

This paper presents an image representation approach which 

is based on matrix factorization in the complex domain and 

called exemplar-embed complex matrix factorization (EE-

CMF). The proposed EE-CMF approach can very 

effectively improve the performance of facial expression 

recognition. Moreover, Wirtinger’s calculus was employed 

to determine derivatives. The gradient descent method was 

utilized to solve the complex optimization problem. 

Experiments on facial expression recognition verified the 

effectiveness of the proposed EE-CMF. It provides 

consistently better recognition results than standard NMFs. 

 

Index Terms— Complex matrix factorization, facial 

expression, optimization, nonnegative matrix factorization 

 

1. INTRODUCTION 

 

Facial expressions contain a lot of information, such as 

feeling and cognitive motion. Facial expression recognition 

(FER) plays an important role in human communication. 

Age, ethnicity, gender, facial hair, the makeup style, gesture, 

occlusion, and environment lighting affect the performance 

of FER [1]. How to design an effective and robust system is 

a challenging topic in FER.  

Feature extraction is a critical step of the FER system. 

Recently, many works have been done on subspace 

projection techniques for appearance-based feature 

extraction. In the subspace learning scheme, the new feature 

matrix is built which maps data points to a subspace. The 

popular subspace projection techniques, such as principal 

component analysis (PCA) [2], linear discriminant analysis 

(LDA) [3, 4, 12], and nonnegative matrix factorization 

(NMF) [5, 6], represent a facial image as a linear 

combination of low rank basis images. Lee and Seung [5, 6] 

found that NMF has the superior ability on parts-based 

representation. NMF is an unsupervised data-driven 

approach in which all elements of the decomposed matrix 

and the obtained matrix factors are forced to be nonnegative. 

The sparsity constraint can also be imposed on the cost 

function. For instance, Hoyer [7] proposed a sparse function 

and incorporated the sparseness into factorizing a 

nonnegative matrix to improve the obtained decompositions. 

Yuan and Oja [8] introduced a projective NMF (PNMF) 

which learns localized features.  

Many modified NMFs have been developed to perform 

the FER task. Nikitidis et al. [9, 10] developed two 

extensions of the NMF that applied discriminant criteria as 

constraints, including the clustering based discriminant 

analysis (CDA) [11] and linear discriminant analysis (LDA) 

[12]. Lee and Chellappa suggested incorporating sparsity 

constraints to generate localized dictionaries from dense 

motion flow image sequences [13]. Apparently, most NMF 

frameworks require the addition of regularizes to improve 

FER performance. Moreover, nonnegative entries are 

usually compulsory for the data matrix in NMFs, which 

restrict the applications of NMF. Semi NMF and convex 

NMF algorithms have been proposed to deal with this 

limitation [14]. In particular, convex NMF algorithm (Con-

NMF) further require that the basis vectors in NMF are 

convex or linear combinations of the mixed-sign data points. 

Besides, the interesting work of Liwicki et al. [15] showed 

the equivalence between the square Frobenius matrix norm 

in the complex field and the robust dissimilarity measure in 

the real field. These studies motivate us to propose a new 

model, named exemplar-embed complex matrix 

factorization (EE-CMF). In the proposed model, the real 

data is transformed to the complex domain and the complex 

data matrix is factorized under imitating Con-NMF frame 

work. The object function is minimized throughout an 

unconstraint complex optimization problem. In the real 

domain, a Con-NMF loss function is bounded optimization. 

Since the Cauchy-Riemann equation no longer holds, the 

standard complex derivative is unable to operate as usual. In 

complex domain, the Wirtinger calculus [16] provides an 

efficient tool to compute derivations and brings more 

advantages for complex optimization problem. 

The main contributions of this work are summarized as 

follows. 

1) An image analysis method on the complex domain, 

which is called EE-CMF, is proposed. 
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surprise sadness anger    fear disgust happiness  neautral 

Fig. 2. Cropped face images of six facial expressions from the 

JAFFE dataset [26]. 

2) In complex domain, the updating rule for EE-CMF is 

derived based on gradient descent method. 

3) A thorough experimental study on facial expression 

recognition is conducted. The results show the proposed EE-

CMF yields better performance compared to basic and 

extension of the NMF. 

 

2. PRELIMINARIES 

 

2.1.  Nonnegative Matrix Factorization 

 

Given an N×M input data matrix 
1 2

( , ,..., )
M

X x x x , where 

M is the number of facial images and each column xm 

corresponds to an image with size a by b (N=a×b). The 

NMF problem is to find N K
W  and K M

V that 

satisfies the following objective function: 
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The basic matrix W contains K vectors which are 

linearly combined by the coefficients in V to represent the 

data. To solve (1), Lee and Seung [5, 6] provided the 

iteratively updating algorithms as follows: 
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To relax the constraint of nonnegative data, Ding et al. 

[14] proposed convex nonnegative matrix factorization 

(Con-NMF) where mixed-sign data matrices are applied. 

Con-NMF imposes a constraint that the column vectors of   

must lie within the column space of X i.e. W=XA where A 

is an auxiliary adaptive weight matrix and obtain the 

objective function [17]: 
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The factors V and A are updated as follows [14]: 
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2.2.  Wirtinger’s Calculus and Complex Optimization 

 

[Definition 1] Let :f  be a function of real 

variables x and y such that g(z, z*)=f(x, y)  where z=x+iy  and 

g is analytic with respect to z and z*. The two “partial 

derivative” operators g/z and g/z* are defined by:  

 
*

1 1
, 

2 2

g f f g f f
i i

z x y z x y
 (5) 

It is often referred to as Wirtinger’s derivative [18]. 

[Definition 2]  If f is a real function of a complex matrix Z 

then the complex gradient matrix is given by [18]: 
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How to find the direction of minimum rate of change will 

be stated in the following theorem. 

[Theorem 1] Let : N M N Mg  be a real-valued 

function that maps complex matrices into the real domain.  

*

*( , )g
Z

Z Z  gives the direction where the function g has 

the minimum rate to change with respect to Z [19].  

In fact, the first order Taylor series expansion for the 

real-differentiable function g(Z, Z*) has the form as 

 * *

* *( , ) , , 2Re ,g g g g         
Z Z Z

Z Z Z Z Z (7) 

According to the Cauchy-Bunyakovsky-Schwarz 

inequality [20], 
*

H g g    *
Z Z

Z Z . The equality 

holds when Z and * g
Z

 is collinear, i.e., the gradient   

* g
Z

 defines the direction of the maximum rate of change 

in g(., .) with respect to Z. 

 

3. PROPOSED METHOD  

 

3.1.  Exemplar-Embed Complex Matrix Factorization 

(EE-CMF) 

 

To get the complex data matrix N M
Z , the original real 

data matrix X is first normalized and then transformed into 
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Fig. 1. Cropped face images of six facial expressions from 

the CK+ dataset [25].  
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the complex field using Euler's formula [21] by a mapping  

from  to N N .   
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where xi denotes an N-dimensional vector, which 

corresponds to an input image and is sorted in the 

lexicographic order, (c) [0, 1]
t

x   and .  

After obtaining the complex training data Z, we employ 

our proposed EE-CMF to factorize Z into complex matrix 

factors. The basis matrix in EE-CMF is constructed by the 

linear combination of the complex training examples. Given 

the complex data matrix N M
Z , EE-CMF factorizes Z  

into the encoding matrix K M
V  and the exemplar-embed 

basis matrix E ZW  where .M K
W  Therefore, the 

objective function of EE-CMF problem can be formulated as 

follows: 
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EE-
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2
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3.2. Optimal Solution  

 

In order to solve the minimization problem, we use the 

complex gradient descent algorithm by exploiting 

Wirtinger’s calculus. It can be seen that (9) is a nonconvex 

minimization problem with respect to both variables W and 

V. Therefore, it is impractical to obtain the optimal solution 

by the conventional method. Instead, the following scheme 

can be used to solve the problem in (9).         

- First, fix W and the objective function (9) is modified 

as a function of one variable V as follows: 

 
21

min ( ) min
2 F

O 
V V

V Z - ZWV  (11) 

- Then, W is updated based on the Moore–Penrose 

pseudoinverse [22], which is dented by † , and W=(Z † Z)V †    

with fixed V.          

To solve the subprolem (11), the function O(V) is treated 

as *( , )O V V  where 

* *1
( , ) [ ( )

2

H T H HO Tr V V Z Z V W Z Z  

* ( ) ]H T H H Z ZWV V W Z ZWV  (12) 

According to Theorem 1, at a given iteration round t, the 

following update rule is employed:  

 *

( 1) ( ) ( ) *( )2 ( , )t t t t

t
O   

V
V V V V  (13) 

where t is the learning step parameter for the tth iteration 

estimated by the Armijo rule [23]. From the Armijo rule,     

t = ts , 0 <  < 1, and st is the first non-negative integer 

such that the following inequality is satisfied: 
( 1) *( 1) ( ) *( )( , ) ( , )t t t tO O  V V V V  

                      *

( ) *( ) ( 1) ( )2 Re ( , ),t t t tO   
V

V V V V (14) 

The first order partial derivative with respect to V* are 

evaluated as follow: 

 *

*( , ) H H H HO   
V

V V W Z Z W Z ZWV  (15) 

The condition in (14) guarantees the decrease of the 

function value in each iteration. Finally, one can choose a 

pre-defined threshold  and set the stopping condition as 

follows: 

 *

*( , )
F

O  
V

V V  (16) 

 

4. EXPERIMENTS 

 

In this section, we evaluated the performance of the 

proposed EE-CMF framework for FER. The classification 

capability of the derived encoding coefficient vector was 

compared with various NMF-based methods. We obtained 

the basic matrix Wtr from †( )tr tr tr trW Z V Z  in the training 

phase. The test sample zte was encoded by †( ) .te tr tev ZW z  

Classification was performed by the nearest neighbor 

classifier after projection. 

 

4.1. Data Description, Baselines, and Experiment 

Settings  

 

The proposed model was evaluated on two publicly 

available databases: the Cohn-Kanade (CK) [25] and the 

JAFFE [26] datasets. There are seven facial expressions in 

these datasets, including one neutral state and six basic 

expressions that contains happiness, sadness, surprise, anger, 

disgust, and fear. Each facial image in two databases was 

cropped and resized to have fixed size of 32 × 32 pixels. 

Figures 1 and 2 show some of the images in the two datasets.   

The proposed algorithm was compared to the following 

popular NMF algorithms: (1) basic NMF [6]; (2) semi-NMF 

[14]; (3) convex NMF [14] (Con-NMF); (4) weighted NMF 

(We-NMF) [27], which assigns binary weights to the data 

matrix; (5) Ne-NMF [28], which is an efficient solver that 

applies Nesterov’s optimal gradient method in the 

optimization process. 

To satisfy (12), the rate of reducing the step size  was 

set with the sufficient decrease condition at 0.01. The 

stopping criterion was as in (15) where the relative tolerance 

 was 10-4 or at most 10000 iterations. 
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TABLE IV 

FACIAL EXPRESSION RECOGNITION RATE (%) USING THE JAFFE 

DATABASE WITH DIFFERENT SUBSPACE DIMENSIONALITIES  

(Case 1: No. Training =2) 

No. 

Base 

EE- 

CMF 
NMF 

Semi- 

NMF 

Con- 

NMF 

We- 

NMF 

Ne- 

NMF 

20 79.86 70.55 57.80 55.08 67.39 74.79 

30 79.86 73.70 66.57 57.36 75.48 74.93 

40 77.53 75.61 72.33 58.49 77.26 73.70 

50 77.53 78.49 74.52 60.60 80.00 75.34 

60 81.40 79.31 74.93 61.60 80.55 70.68 

70 85.78 80.68 78.22 60.59 82.19 72.05 

Ave. 80.33 76.39 70.73 58.95 77.15 73.58 

 
4.2. Performance and Comparison  
 

4.2.1. Facial expression recognition on the Cohn–Kanade 

dataset 

Regarding to facial expression images of the CK database, 

we conducted two experimental cases with different numbers 

of training data for each expression. The first case was to 

take one image among five frames for training and the rest 

images for testing. In the case 2, two images of each 

expression from each person were collected to form the 

training dataset. The average recognition rates with different 

subspace dimensionalities are shown in Table I.  

From Table I, there is the same trend between the 

number of training images and accuracy rate in most 

algorithms. That is, a smaller number of training data (i.e., 

smaller dimensionality) leads to a lower recognition rate. As 

shown in Table II, the facial expression recognition rates 

obtained in case 1 is lower than those in case 2 and the 

recognition rate increases as the dimensionality grows. 

Compared to other methods, the proposed EE-CMF 

framework yields the best results. The average recognition 

rates of NMF, Semi-NMF, Con-NMF, We-NMF, Ne-NMF, 

and the proposed EE-CMF in Case 2 are 94. 86%, 90.57%, 

78.82%, 94. 64%, 94.17%, and 96.59%, respectively. 
 

4.2.2. Facial expression recognition on the JAFFE dataset 

The JAFFE dataset was also adopted to evaluate the FER 

performance. In the first case, one image of each expression 

per person was taken at random to construct the training data 

and the rest images were used in the test phase. Similarly, in 

case 2, two images were obtained for the training set. 

However, the JAFFE database is more challenging and many 

images within it are difficult to recognize. Tables III and IV 

show the recognition rate of each. All of the experimental 

results in Tables I-IV demonstrate that the proposed EE-

CMF framework has much better performance than other 

existing methods. 

 

5. CONCLUSION 

 
This work proposes the exemplar-embed complex matrix 

factorization (EE-CMF), a subspace learning framework, in 

the complex domain. After transforming training images into 

the complex domain, the basis matrix is constructed by the 

linear combination of the complex training examples. The 

gradient descent method with Wirtinger’s calculus was used 

to solve the complex matrix factorization problems. The 

proposed EE-CMF framework was tested on two facial 

expression datasets and very accurate recognition results are 

yielded. The proposed framework is much superior to the 

traditional and extension of NMF algorithms. Incorporating 

more constraints to widen applications and further 

improving the performance will be the future work. The 

complexification for tensor factorization is also a direction 

for future research. 

TABLE III 

FACIAL EXPRESSION RECOGNITION RATE (%) USING THE JAFFE 

DATABASE WITH DIFFERENT SUBSPACE DIMENSIONALITIES  

(Case 1: No. Training =1) 

No. 

Base 

EE- 

CMF 
NMF 

Semi- 

NMF 

Con- 

NMF 

We- 

NMF 

Ne- 

NMF 

20 66.99 65.24 59.65 47.06 63.36 66.85 

30 66.36 68.11 64.27 54.06 68.32 61.05 

40 72.31 70.84 66.36 54.06 68.95 63.28 

50 72.03 71.68 68.6 47.06 69.02 61.82 

60 72.45 71.12 71.05 46.36 72.38 63.71 

70 72.31 69.79 70.70 27.34 69.16 62.52 

Ave. 70.41 69.46 66.77 45.99 68.53 63.21 

 

TABLE I 

FACIAL EXPRESSION RECOGNITION RATE (%) USING THE CK 

DATABASE WITH DIFFERENT SUBSPACE DIMENSIONALITIES  

(Case 1: No. Training =1) 

No. 

Base 

EE- 

CMF 
NMF 

Semi- 

NMF 

Con- 

NMF 

We- 

NMF 

Ne- 

NMF 

20 95.43 85.41 75.12 55.25 85.06 94.3 

30 92.25 90.99 86.88 65.89 91.07 89.3 

40 91.24 93.88 91.90 73.55 94.17 90.27 

50 95.06 94.50 93.82 80.27 94.75 91.80 

60 96.14 95.06 95.00 87.40 94.92 92.34 

70 96.59 95.18 95.58 90.42 95.62 93.31 

80 96.74 95.93 96.34 91.57 95.58 93.27 

90 96.63 95.95 96.59 92.42 95.87 93.26 

100 96.78 96.03 96.57 92.03 95.62 94.17 

Ave. 95.21 93.66 91.98 80.98 93.63 92.45 

 

TABLE II 

FACIAL EXPRESSION RECOGNITION RATE (%) USING THE CK 

DATABASE WITH DIFFERENT SUBSPACE DIMENSIONALITIES  

(Case 1: No. Training =2) 

No. 

Base 

EE- 

CMF 
NMF 

Semi- 

NMF 

Con- 

NMF 

We- 

NMF 

Ne- 

NMF 

20 93.14 84.44 66.75 69.31 84.49 94.75 

30 94.02 91.38 79.86 69.94 91.32 94.08 

40 96.12 94.55 89.95 71.74 94.60 94.41 

50 97.58 96.03 93.66 70.47 95.15 94.52 

60 96.89 97.02 95.70 76.78 96.47 94.38 

70 97.27 96.70 96.12 82.26 97.11 93.72 

80 97.77 97.91 97.14 86.28 97.66 94.21 

90 98.21 97.88 97.96 89.84 97.49 94.16 

100 98.35 97.85 98.02 92.78 97.47 93.28 

Ave. 96.59 94.86 90.57 78.82 94.64 94.17 
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