
GOOD FEATURES TO TRACK FOR RGBD IMAGES

Maxim Karpushin†, Giuseppe Valenzise∗, Frédéric Dufaux∗

† LTCI, Télécom ParisTech – Université Paris-Saclay
∗ L2S, CNRS – CentraleSupélec – Université Paris-Sud

ABSTRACT

RGBD (texture-plus-depth) image representation enriches tradi-
tional 2D content with additional geometrical information, having
the potential to improve the performance of many computer vi-
sion tasks. In image matching, this has been partially studied by
considering how depth maps can help render feature descriptors
more distinctive. However, little has been done to design keypoint
detection approaches able to leverage the availability of depth in-
formation. In this paper, we propose a novel and robust approach
for detecting corners from RGBD images. Our method modifies
a classical corner detection strategy, based on local second-order
moment matrices, by computing derivatives in a coordinate system
which reflects the local properties of object surfaces. Our results
demonstrate a higher stability to out-of-plane rotations of the pro-
posed RGBD corner detector both in terms of feature repeatability
and in a visual odometry application.

Index Terms— RGBD, texture+depth, corner detection, key-
point extraction, local features

1. INTRODUCTION

The task of establishing local visual correspondences between two
or more images consists in finding a set of local features that are
visually similar in different pictures up to certain transformations,
such as rotations, translations, changes of scale, etc. A number of
computer vision problems can broken down into determining the
number and the strength of these correspondences, including image
retrieval [1], indexing [2], classification [3], object tracking [4],
visual odometry [5] and simultaneous localization and mapping
(SLAM) [6].

During the last decade, the problem of finding visual correspon-
dence has been thoroughly studied for conventional images [7], lead-
ing to a variety of techniques for local features extraction [8, 9,
10], and stimulating standardization activities in MPEG [11, 12].
Nonetheless, the emergence of new and richer video formats, such
as 3D meshes, plenoptic, lightfield and RGBD (texture+depth) im-
ages calls for novel image matching tools, and in particularly for im-
proved local features able to leverage these extended representations
of visual content. In this work we focus on the RGBD representa-
tion, as this kind of content has become relatively easy to capture
thanks to the popularity of acquisition devices such as the Microsoft
Kinect. Differently from point clouds, the RGBD format offers a
simple pixel-based representation consisting of a conventional tex-
ture image, and of a depth map, which stores the distance of objects
in the scene from the camera plane.

RGBD content can be matched based on its texture only, through
some conventional 2D image matching algorithm. However, it has
been extensively shown [13, 14, 15, 16, 17, 18, 19, 20] that in-
volving the complementary depth information in a proper way into

the feature extraction process may render the features from the tex-
ture map more robust to certain visual deformations – notably, per-
spective distortions, out-of-plane rotations and viewpoint position
changes – to which texture-only local features are instead very sen-
sitive. While several techniques to enhance local texture description
employ depth [13, 14, 15, 21, 22], little has been done to exploit ge-
ometric information in the very first step of feature extraction, i.e.,
keypoint detection. In our previous work [19] we proposed a scale-
invariant blob detector for RGBD images. In this paper, we further
study the problem of keypoint extraction, by dealing with another
class of widely used interest points: corners.

Specifically, we consider the popular Good Features to Track
(GFTT) [23] and Harris corner detection principles, and extend them
to RGBD content, making the detected keypoints more robust to 3D
distortions with a moderated computational effort. More precisely,
the contribution of this paper is twofold: i) we describe a generic
technique to exploit depth into a local feature detection-related pro-
cessing of the texture map by means of adaptive local axes; ii) us-
ing the proposed technique, we extend the GFTT and Harris corner
detection approaches to texture+depth images. The proposed detec-
tors are then tested using a standard keypoint repeatability evaluation
scenario on synthetic RGBD images as well as in a visual odometry
setting on real RGBD images acquired with the Microsoft Kinect
sensor.

The rest of the paper is organized as follows. In Section 2 we
describe the related work on keypoint detection. Section 3 intro-
duces the notion of local adaptive axes and describes the proposed
extension of GFTT and Harris detectors for RGBD content. Sec-
tion 4 presents the experimental results obtained in the two testing
scenarios in comparison to four other keypoint detectors. Conclud-
ing remarks and future work are given in Section 5.

2. BACKGROUND AND RELATED WORK

Visual correspondences are generally obtained through image
matching algorithms. These typically consist of three stages: (1)
keypoint detection, aiming at finding interesting points in an image,
which have chances to be located in transformed images as well; (2)
feature description, providing a compact signature of the previously
detected keypoints based on their neighborhoods; and (3) descriptor
matching, defining a comparison protocol for the local descriptors.
In this paper we focus on the first step, i.e., detection of keypoints in
RGBD images.

Keypoint detectors can be broadly classified into blobs and
corners detectors, according to which kind of image characteris-
tics they search for. Popular examples of blob detectors include the
Difference-of-Gaussians detector (DoG) integrated into the Scale In-
variant Feature Transform (SIFT) pipeline [8], and the Fast Hesssian
detector used in the Speeded Up Robust Features (SURF) [9]. While
several extensions of blob-based local feature descriptors to RGBD
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exist in the literature [13, 15, 16, 20], only [19] provided an explicit
formulation of a scale space construction for texture+depth data,
as well as a complete blob detector pipeline based on it. Up to the
authors’ knowledge, this paper is the first to propose a texture+depth
corner detector.

The first and still very popular corner detector robust under mod-
erate content deformation was proposed by Harris and Stephens [24].
They observed that the ratio of eigenvalues of the second-order mo-
ment matrix of image gradient, M, smoothed by a convolutional
kernel W , i.e.,

M =

((
∂I
∂u

)2 ∂I
∂u

∂I
∂v

∂I
∂u

∂I
∂v

(
∂I
∂v

)2
)
∗W, (1)

may serve as a clue of a repeatable corner: if the ratio is low enough
at a given position within the image, a distinctive corner is discov-
ered (here I(u, v) is the image intensity at pixel (u, v)). Moreover,
they showed that the explicit computation of the eigenvalues is un-
necessary, and the quantity

R = detM− ktr2M (2)

is positive in corner regions and negative near edges (k is a constant).
Local maxima of R in the spatial image variables reveal corners,
which are more distinctive (and thus stable under content deforma-
tions) for larger values of R. Thus, the Harris keypoint detector
employs thresholded local maxima of R as keypoints.

Shi and Tomasi [23] proposed a different detection principle,
also based on the eigenvalues of (1). Studying which image loca-
tions might be reliably tracked, they observed that local maxima of
the minimum eigenvalue λmin of M also reveal distinctive image
corners. Additionally, thresholding the minimum eigenvalue ensures
well-conditioning ofM, which facilitates the selection of stable key-
points. This led to a corner detector known as Good Features to
Track (GFTT). Numerous contributions related to the second-order
matrix-based detectors have been proposed afterwards. To name a
few, Sipiran and Bustos [25] extended Harris detector for meshes.
Tommasini et al. [26] proposed an efficient technique of spurious
feature rejection for GFTT.

In this work we develop a generic technique allowing a local
keypoint selection test (specifically, a corner test) to be performed
within the surface metric instead of the standard image plane met-
ric. With this technique we aim at better keypoint repeatability under
various 3D deformations (notably viewpoint position changes): our
key observation is that the surface metric reflects intrinsic surface
properties being covariant to camera position changes. This allows
to reveal keypoints in texture image in a way intrinsically indepen-
dent to the camera position. In the following section we explain how
this could be done with an affordable computational cost. In the rest
of this paper, we focus on second-order moment matrix based detec-
tors, such as Harris and GFTT, whose principle has been also used
as additional stability criterion in more complex detectors to filter
out keypoint candidates situated near edges [8, 27]. The proposed
approach can be extended to alternative corner detection strategies,
such as SUSAN (the Smallest Univalue Segment Assimilating Nu-
cleus) [28] or Accelerated Segment Test, an extended version of SU-
SAN initially developed in [29, 30] and further employed in scale-
covariant local feature detection pipelines [10, 27].

3. THE PROPOSED APPROACH

Perspective distortions are the major effect of out-of-plane rotations
and arbitrary camera position changes, and hinder the repeatability

Fig. 1. Local adaptive axes computed for a RGBD image from
Freiburg long office household sequence: raw vectors given by PCA
before (left) and after regularization (right).

of keypoints. In order to model and compensate for these trans-
formations, we propose to perform a change of basis, obtained by
computing local adaptive axes. This new system of coordinates will
replace pixel-wise the regular image plane grid, enabling to interpret
the perspective distortions at each pixel of the texture map by means
of the surface metric defined by the depth map.

To this end, following our prior work [17, 20] we first consider
that the texture image describes the photometric pixel intensities
mapped to the manifold defined by the depth map. Hence, to de-
tect keypoints on the textured manifold, we apply the corner test in
the tangent plane for each point of the surface. To do so, we sample
directional image derivatives ∂I

∂~ξ
, ∂I
∂~η

in the local axes (~ξ, ~η) ∈ R2×2,
which are thus a basis of the tangent plane projected on the camera
plane. We use these derivatives to replace those in (1), obtaining the
new second-order matrix:

Mproposed =

( ∂I∂~ξ)2 ∂I

∂~ξ

∂I
∂~η

∂I

∂~ξ

∂I
∂~η

(
∂I
∂~η

)2
 ∗W. (3)

Harris corner or GFTT minimum eigenvalue tests and the non-local
maximum suppression are then carried out in the same way as be-
fore. The detection is thus performed on the manifold but not in the
image plane, becoming intrinsically linked to the content and less
dependent to the relative pose of the camera with respect to the sur-
face.

In the following we explain how to compute a (regular) local
axes field (~ξ, ~η) to perform the proposed on-manifold corner detec-
tion approach.

3.1. Local adaptive axes field computation

The following procedure to compute local axes is carried out at each
image point (u, v). To obtain the adaptive local axes (~ξ, ~η), we first
select a basis (~a,~b) ∈ R3×2 of the tangent plane (in the scene coor-
dinates) and project it on the camera plane using the pinhole camera
model. The basis is obtained by means of PCA-based normal estima-
tion [31], which is a common technique to estimate surface normals
in point clouds. It consists in computing the eigenvector correspond-
ing to the smallest eigenvalue of the point cloud covariance matrix,
which gives a good estimate of the surface normal vector. In appli-
cations that need only the normals, the other two eigenvectors are
neglected, but we make use of them since these two vectors provide
an orthonormal basis of the tangent plane. An illustration is given
in Fig. 1 (left). It is worth noticing that this estimation can be im-
plemented in a computationally efficient way using integral images
technique [32].
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3.2. Local adaptive axes regularization

As observed in Fig. 1 (left), local axes computed with PCA are quite
irregular: when passing from a point on the surface to its neigh-
bor, the corresponding basis vectors may change significantly, due
to noise or fine variations in the depth. This might have a signif-
icant impact when computing the eigenvalues of the second-order
moment matrix M, as well as in the non-local maximum suppres-
sion of GFTT or Harris corner scores.

To cope with this, we need to regularize the local axes field,
e.g., by enforcing its continuity along relatively smooth continuous
surfaces. We propose to do it in the following simple way: since
we are free to choose the basis (~a,~b) of the tangent plane, we rotate
each pair (~a,~b) around the normal vector so that the first basis vector
~a always lies in XZ plane (X and Y are standard image axes, Z is
oriented forward). With no loss of generality we may assume that
such a basis always exists. An example of such regularized local axes
vector field is given in Fig. 1 (right), where ~a vectors are displayed
in red. Formally, we compute the two basis vectors as follows. Let
V =

(
~n ~a ~b

)
be the result of the PCA decomposition, where ~n is

the normal vector, and ~a = (ax ay az)
T , ~b = (bx by bz)

T . We
look for a rotated pair (~a∗,~b∗) so that ~a∗ = (a∗x 0 a∗z). The rotation
around the normal ~n is then expressed by means of a rotation matrix
R as follows:

~a∗ = VRV−1~a, R =

1 0 0
0 cosα sinα
0 − sinα cosα

 . (4)

We develop this expression using the relation between ~a and V:

~a∗ = VRV−1~a = VR

0
1
0

 =
(
~n ~a ~b

)
R

0
1
0

 . (5)

This gives us the following equation to derive the rotation angle:

a∗y = ay cosα− by sinα = 0, (6)

for which we can safely assume the following solution:

cosα =
by√
a2y + b2y

, sinα =
ay√
a2y + b2y

. (7)

We plug the expression (7) into R in (4) with no need to derive α
explicitly. Finally, according to Eq. (5), the resulting pair (~a∗,~b∗)
corresponds to the second and third column of the VR matrix re-
spectively. For further regularity of the resulting local axes field, we
may need to flip the on-screen projections ~ξ and ~η of ~a∗ and/or ~b∗

so that they form a properly oriented pair, e.g., ensuring that ~ξ is ori-
ented towards left with respect to the camera, as in the example in
Fig. 1 (right).

This technique allows to render a continuous vector field effi-
ciently (with few floating point multiplications and additions and
one square root computation per pixel) and stabilize the keypoint
detection.

4. EXPERIMENTS AND DISCUSSION

We test the proposed approach in two scenarios: a standard detector
repeatability test and a visual odometry application. In both of them
we perform the keypoint detection using the original Harris corner
test1 and GFTT minimal eigenvalue test using matrix (3).

1We set k = 0.04 as it is done in OpenCV implementation of Harris
corner detector

The two proposed variants are compared to other popular state-
of-the-art corner detectors for conventional images: we involve
GFTT, Harris and Fast AST [29] detectors implemented in OpenCV
and the original implementation of BRISK detector [10], which is a
scale-covariant extension of Adaptive Generic AST [30].

4.1. Repeatability

The repeatability score is a standard measure to evaluate the key-
point detector performance [33, 34]. For a given sequence of views
of the same scene, it consists in detecting keypoints in all the im-
ages and then computing the fraction of repeated keypoints between
a reference view and the remaining ones. A keypoint is considered
as repeated if it occupies (approximately) the same physical area of
the scene. We perform this test by means of overlap error: all the
keypoints are considered as spheres of a unit size, and the volumet-
ric overlap of at least 50% is required between a reference and a test
keypoint to count the detected keypoint as repeated. The necessary
ground truth to perform this check is provided within the data. In this
test we keep default values of all the parameters for all the methods,
except the score thresholds: we chose appropriate threshold values
for each image sequence so that all the detectors provide approxi-
matively 1000 keypoints per image. This ensures a fair comparison
between detectors.

The experiment is performed on three different sequences of
synthetic RGBD images representing viewpoint position changes
and out-of-plane rotations (in total 70 images of 960×540 pixels).
The resulting repeatability scores in function of reference–test view-
point angles difference are displayed in Fig. 2. Both the proposed
extensions demonstrate a moderately improved repeatability com-
pared to all the other methods, with the only exception on the last
image sequence, notably for GFTT. BRISK detector exhibits lower
matching scores, since it is the only scale-covariant detector used in
the test, but for a fair comparison we ignore its keypoint scales in the
overlap error computation.

4.2. Visual odometry

Our second experiment is performed on two image sequences from
Freiburg dataset [36]. This experiment is particularly suitable to test
whether a given feature is good to track, since it consists in tracking
distinctive visual landmarks from one frame to next one and using
the matches to compute the observer trajectory (position and orien-
tation). The goal is to estimate the trajectory as close as possible to
the given ground-truth measured with GPS and/or inertial sensors.

To estimate the trajectory in this experiment we use the algo-
rithm described in [22]. We provide it with at most 500 keypoints
with the highest detector responses at each image, matched through
Binary Robust Appearance and Normal descriptor (BRAND) [22].
This descriptor uses jointly the texture and the depth map, and is suit-
able for keypoints that are not scale-covariant, since it re-estimates
the characteristic scale from the depth map. Following the same
protocol as in [18], we compute translation error, showing how ac-
curately the position is estimated, and rotation error, measuring the
estimated orientation accuracy. Due to space limitations, we present
the results only on two sequences from Freiburg in Fig. 3.

On both test sequences, the proposed variant of GFTT is able
to achieve smaller or comparable translational and rotational errors
to other approaches. Indeed, on Long office household sequence the
proposed GFTT features are the only able to provide the precision
within 12 cm and 4°. On the same sequence, however, the pro-
posed variant of Harris detector turns out to be much less accurate.
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Fig. 2. Keypoints repeatability with different corner detectors on
Bricks, Graffiti and Fish sequences used in [16, 19, 20, 35].

The possible reason is a very fast motion of the camera in this se-
quence, causing a significant directional blur in the texture. In these
conditions, the Harris corner test may produce unstable keypoints
(the original Harris detector does not perform well neither), whereas
the well-conditioning of the second order matrixM guaranteed by
GFTT is able to produce repeatable keypoints.

5. CONCLUSION

This paper describes an efficient general technique for corner detec-
tion in texture+depth images based on second-order moment matrix.
The proposed approach aims at reliable detection under significant
out-of-plane rotations and arbitrary viewpoint changes. These visual
deformations induce perspective distortions, which are known to af-
fect the stability of keypoint detection in traditional imaging. The
proposed approach is tested with the popular Harris and Good Fea-
tures to Track corner detectors. Repeatability tests and visual odom-
etry experiments have shown overall improvement of the feature per-
formance. Moreover, the proposed method has linear complexity in
function on the image size. In future work, feature invariance un-
der significant scale changes and varying lightning conditions will
be addressed.
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Fig. 3. Visual odometry results on Kinect images from Freiburg
dataset: translation (top two) and rotation errors (bottom two) on
the first 500 frames of Long office household and Floor sequences
respectively.
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