
SPATIO-TEMPORAL BINARY VIDEO INPAINTING VIA THRESHOLD DYNAMICS

M. Oliver R.P. Palomares C. Ballester G. Haro∗

DTIC – Universitat Pompeu Fabra

ABSTRACT

We propose a new variational method for the completion of mov-
ing shapes through binary video inpainting that works by smoothly
recovering the objects into an inpainting hole. We solve it by a sim-
ple dynamic shape analysis algorithm based on threshold dynamics.
The model takes into account the optical flow and motion occlusions.
The resulting inpainting algorithm diffuses the available information
along the space and the visible trajectories of the pixels in time. We
show its performance with examples from the Sintel dataset, which
contains complex object motion and occlusions.

Index Terms— Shape completion, binary video inpainting,
threshold dynamics.

1. INTRODUCTION

Video inpainting stands for the completion of missing, damaged
or occluded information in a video sequence in such a way that
this restoration is as unnoticeable (visually plausible) as possible.
The applications include tools for cinema post-production to remove,
e.g., unwanted or private items, or for the recovering of occluded
areas in new-view generation for 3D television or broadcasting of
sport events, to mention just a few. First attempts on video inpaint-
ing consisted in applying image inpainting techniques to each frame
separately but the temporal incoherence from frame to frame is very
noticeable for the human vision system, producing an undesirable
flickering effect. Video inpainting brings additional challenges to
the ones of image inpainting not only in order to obtain temporally
coherent results but also due to the occlusions and disocclusions be-
tween objects that move along time.

Binary inpainting methods aim at recovering (or disoccluding)
shapes, stated as binary objects. They can be a tool for the auto-
matic understanding of a dynamic scene through its decomposition
in completed and isolated objects interacting among them. On the
other hand, they might be combined with texture-based inpainting,
in a two-step algorithm, so that the completed shape helps to guide
the copy of patches: inside the shape of interest only patches from
the same object are allowed to be copied and similarly for the back-
ground.

This paper proposes a binary video inpainting method that works
directly in the spatio-temporal dimension. To the best of our knowl-
edge, this is the first work on binary video inpainting, that is the
completion of moving shapes. We propose a variational formula-
tion for object-based video inpainting that recovers a smooth surface
by imposing not only spatial regularity but also temporal continu-
ity along the visible trajectory of the object. It includes the con-
vective derivative and has no restrictions on background nor fore-
ground movements. The convective derivative has been used for
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ensuring spatio-temporal consistency in other video editing appli-
cations [6, 5, 17, 31].

Trajectories and the convective derivative are defined by the op-
tical flow (the vector field that recovers the apparent motion of two
consecutive frames) which is previously estimated and completed
(inside the inpainting mask or hole) also through variational meth-
ods. and we present qualitative and quantitative results showing that
our binary video inpainting method obtains similar results using as
input either the ground truth optical flow or an estimated one. On
the other hand, the optical flow is unknown inside the hole and it is
interpolated with a motion inpainting method.

One of the main difficulties that has to be tackled in video com-
pletion is due to occlusion effects. Object occlusions and disocclu-
sions generate artifacts which are specially visible at moving occlu-
sion boundaries. Moreover, optical flow methods may fail in oc-
clusion areas due to unreliable shape or point matching. In general,
points visible at time t that are occluded at time t+1 should not have
a corresponding point at frame t + 1. Thus video completion algo-
rithms have to detect such occlusions in order to correctly decide
how to interpolate. Our method keeps track of the motion occlu-
sions, which are estimated from the optical flow, and incorporates
them into the proposed variational method.

Most inpainting approaches may be divided into geometry-
oriented methods (e.g., [23, 2, 10, 22, 11]), texture-oriented methods
(e.g., [12, 36, 28, 1, 7, 18, 26, 33, 37, 13]) and methods combin-
ing both ideas. The work of Cao et al. [9] is an example of the
later and combines an exemplar-based approach with a geometric
guide computed by minimizing Euler’s elastica of contrasted level
lines in the inpainted region. On the other hand, binary inpainting
tools for images are also used to disocclude shapes and thus can be
considered as geometry-oriented methods [14, 4, 27]. Merriman,
Bence, and Osher argue in [25] that the convolution of the indicator
function of a shape with a Gaussian followed by a threshold at 1/2
simulates the mean curvature motion. This was proved by Barles
and Georgelin [3] and Evans [16]. The diffusion process followed
by thresholding is known as threshold dynamics and provides a
dynamic shape analysis. Threshold dynamics interpolations usually
minimize a geometric functional, based either on the length, area, or
curvature of the shape contours [25, 19] and some authors have used
it for 2D-shape completion or disocclusion [14, 4, 27].

2. PROPOSED MODEL

We present in this section a variational model for video inpaint-
ing with a threshold dynamics strategy using a differential operator
based on a generalized 3D gradient with the convective derivative in
time and the usual gradient in space.

Let u0(x, t) be a binary video sequence defined on V\M, where
V = {(x, t) : x = (x, y) ∈ Ω, t ∈ R} andM ⊂ V denotes the
inpainting hole with missing information. Here, Ω ⊂ R2 is assumed
to be the image domain (i.e., the spatial domain of any image frame

1822978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017
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data: inpainting mask (gray) and incomplete object (white)

occlusion maps

ground truth inpainting

inpainting using ground truth OF and operator L̃

inp. using ground truth OF and the proposed operator L

inp. using NLTV-CSAD OF and the proposed operator L

inp. using TV-L1 OF and the proposed operator L

inpainting results using 3D MBO [25]

Fig. 1: Experiment with alley 1 sequence from Sintel [8]: Inpainting
results with different methods and optical flow estimations.

at time t) which is, as usual, a rectangle in R2.
Let us assume that we have at our disposal an optical flow

method as well as an optical flow inpainting method allowing to
compute the optical flow v(x, t) for all (x, t) ∈ V . Later on we will
precise the proposed estimation of v in V .

In order to inpaint the binary video inside the inpainting mask
M⊂ V we propose to solve the following optimization problem

min
u:V→{0,1}

∫
M
‖L (u) ‖2, s.t. u = u0 in V \M (1)

where L (u) is the differential operator defined taking into account
both spatial and temporal regularity as well as the occlusion areas
produced by the motion of objects in the scene, that is:

L (u) = (ux, uy, γχ∂vu) , (2)

where γ > 0 is a parameter and χ : V → [0, 1] is a function mod-
eling the occlusion areas so that χ(x, t) = 0 identifies the occluded
pixels, i.e. pixels that are visible at time t but not at time t+1. Thus,
χ(x, t) = 1 identifies the non occluded pixels and the functional
only imposes temporal regularity along the pixel trajectories that are
not occluded. The convective derivative is defined as

∂vu(x, t) = ∇u(x, t) · v(x, t) +
∂u

∂t
(x, t). (3)

Let us recall how it naturally appears: From the assumption that for
a Lambertian object under uniform constant illumination, the bright-
ness of an object’s particle does not change in time, one deduces that

u(x(t), t) is constant along trajectories of the points in the scene.
This implies that

0 =
du

dt
(x(t), t) = ∇u(x, t)·dx(t)

dt
+
∂u

∂t
(x, t) ≈ ∂vu(x, t), (4)

which leads to the well-known brightness constancy assumption [20]
since v ≈ dx(t)/dt. In our case, since u represents a binary func-
tion that identifies a shape, by minimizing (1), we are imposing
shape regularity along the trajectories (thanks to the convective
derivative) and also spatial smoothness in the recovered shape
(thanks to the spacial derivatives in the operator (2)). Moreover,
since we do not consider the convective derivative for occluded pix-
els, see eq. (2), we are imposing the regularity only along the visible
trajectories.

In our proposal (1) – (2), the parameter γ accounts for the dif-
ferent units in the spatial and temporal domains and also balances
the effect of the temporal diffusion in the resulting gradient-descent
equation. Observe that, when γ is big enough, the minimization
of (1) could be approximated by using, instead of L, the operator

L̃ (u) = ∂vu (5)

as the spatial derivatives have almost no impact. However, as the
experiments in Sect. 4 show, it is necessary to consider the dynamic
evolution of the 3D shape (both in space and time) to correctly com-
plete the moving objects due to the fact that time diffusion is not
able to deal with occlusions. In these situations the spactial diffu-
sion helps to complete the shape. An experimental comparison of
using L̃ instead of our proposed L is shown in Fig. 1 and Fig. 2.

2.1. Optical Flow estimation

To fully specify our method, one needs to provide an estimation of
the optical flow. We propose to use, on the original sequence, the op-
tical flow variational method proposed in [30], which can be applied
to any energy. In particular, we apply it to both the well-known TV-
L1 energy functional [38] and the NLTV-CSAD energy functional
that uses Non Local Total Variation as regularization term [35] and a
smooth variant of the Census Transform [34] as data term. To show
the robustness of our binary inpainting method, we present in Fig. 1
and 2 experiments showing that similar results are obtained using as
input either the ground truth optical flow or the estimated ones.

Moreover, as a consequence of removing objects from the se-
quence, we need to modify the optical flow in the area of the re-
moved object (which constitutes the inpainting mask or hole). So,
we need to do motion inpainting inside the hole. We propose to use
the optical flow inpainting method proposed in [29], although other
methods exist in the literature [21, 24]. In order to correctly fill in
the optical flow we dilate the hole due to the irregularities of the op-
tical flow close to its boundary. Usually, the optical flow estimated
by variational methods is not accurate at motion boundaries.

2.2. Occlusion estimation

In order to estimate motion occlusions we stem from the assumption
that the occluded region, given in our context by χ(x, y) = 0, may
be correlated with the region where the divergence of the optical
flow is negative. This was pointed out by Sand and Teller in [32],
who noticed that the divergence of the motion field may be used to
distinguish between different types of motion areas. Schematically,
the divergence of a flow field is negative for occluded areas, positive
for disoccluded, and near zero for the matched areas. In our method,
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we relax this criteria and use the estimation of occluded (χ = 0) and
visible (χ = 1) regions as

χ(x, t) =

{
1 div(v) ≥ −0.5,

0 else.
(6)

3. ALGORITHM

Following the idea of [15] we propose to modify the original mini-
mization problem (1) by not restricting the solution to be binary and
using instead a double well potential in the functional. Then, the
minimization problem we consider is:

min
u

∫
M
ε‖L (u) ‖2 +

1

ε
W (u), s.t. u = u0 in V \M. (7)

where ε > 0 and W : R → R is a double well potential with
equidepths at 0 and 1, namely W (u) = u2(1 − u2). The gradient
descent equation for the above functional is:

us = 2ε
(
∆u+ γ2(χ∂v)∗χ∂vu

)
− 1

ε
W ′(u), (8)

where (χ∂v)∗ denotes the adjoint operator of χ∂v.
As in [15], we propose to solve the boundary value problem as-

sociated to the PDE (8) by time splitting in such a way that one of
the resulting equations, us = − 1

ε
W ′(u), is an ordinary differen-

tial equation that is solved by a thresholding step, as in the MBO
scheme. Then, starting by an initial spatio-temporal shape T 0 and,
considering its (binary) characteristic function u0 = 1T 0 , the core
of the threshold dynamics scheme that we propose consists of the
iteration of the following steps until convergence:

1. Diffusion step. Compute ū(τ), the solution of the following
PDE for a certain small diffusion time τ , with initial condition
ū(0) = 1T n .

us = ∆u+ γ2(χ∂v)∗χ∂vu

2. Thresholding step. Binarize by defining the shape T = {x :
ū(τ)(x) ≥ 1

2
}

3. Fidelity step. T n+1 = (T ∩M) ∪
(
T 0 ∩ (V \M)

)
The third step imposes that the binary video coincides with the orig-
inal video outside the inpainting domain, as done in [14] for binary
image inpainting by threshold dynamics.

4. RESULTS

In this section we provide some results of the proposed method used
on some image sequences from the Sintel database [8]. We present
two types of experiments. First, we consider an inpainting mask
that covers part of an object and we apply our proposed method
to fill in the object of interest. This situation appears when one
needs to recover damaged videos. In order to test our method, we
built some synthetic examples where we know the inpainting ground
truth. These experiments will help us to evaluate how sensitive our
method is to the given optical flow, to set the parameters, and also to
compare with the 3D MBO suggested in [25] that evolves a surface
by mean curvature motion. In the second type of experiments, the
goal is to remove an object from the input video which is occluding
another one and we apply the inpainting to complete the occluded
object. As previously said in Sect. 2 our model only has two param-

frame 0003 frame 0005 frame 0006 frame 0008

data: inpainting mask (gray) and incomplete object (white)

occlusion maps

ground truth inpainting

inpainting using ground truth OF and operator L̃

inp. using ground truth OF and the proposed operator L

inp. using NLTV-CSAD OF and the proposed operator L

inp. using TV-L1 OF and the proposed operator L

inpainting results using 3D MBO [25]

Fig. 2: Experiment with shaman 3 sequence from Sintel [8]: In-
painting results with different methods and optical flow estimations.

eters to fix: γ, the balance between the spatial and temporal deriva-
tives, and τ , the diffusion time. We experimentally observed that γ
has to be at least 1 to obtain good results. So, we fix it to γ = 1.5
for all the experiments. Regarding the diffusion time, τ , it is well
acknowledged from the threshold dynamics methods that τ has to
be big enough to allow for the curve to evolve, but small enough so
that the MBO scheme approximates motion by mean curvature as
the solution of the Allen-Cahn equation. In all our experiments we
set τ = 1.

Experiments where a damaged object is recovered
The experiments shown in Figs. 1 and 2 illustrate the behaviour of
our video inpainting method with the proposed operator L, the op-
erator L̃, and a comparison with the 3D MBO method. The input
video of Fig. 1 is formed by 7 consecutive frames (20 to 26) from
the alley 1 sequence, and the video of Fig. 2 is formed by 7 consec-
utive frames (3 to 9) from the shaman 3 sequence. The first row of
both figures displays some of them. In the second row, the object
to be inpainted is shown in white and the occluded zone is in gray.
As it can be seen in the second row of Figs. 1 and 2, the first frame
does not have any pixel occluded. This is because in these experi-
ments we consider the first and last frame to be completely known,
i.e, the object to be completed is fully visible in these two frames.
The third row contains the ground truth occlusions and the fourth
one the ground truth of the object completion. The fifth row shows
the result of the inpainting when we use the operator L̃ and the sixth
row corresponds to the inpainting using operator L, both using the
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frame 0001 frame 0002 frame 0005 frame 0006

object to be inpainted (white), object to be removed (gray)

optical flow interpolated inside the inpainting mask

estimated occlusions from the interpolated optical flow

white object inpainted

Fig. 3: Removal of an object in a video sequence (cave2).

optical flow ground truth. Both figures show how crucial can be to
use the L operator: In Fig. 1 the hair of the girl is not completely
recovered if we only consider the convective term, and in Fig. 2 the
top of the finger is incomplete. The reason is that the pixels that need
to be inpainted have an occluded trajectory – as it can be seen in the
respective occlusion maps (third row) – and no temporal diffusion
is applied on them. The spatial diffusion helps to complete these
occluded areas. Finally the last row shows the MBO method [25]
extended to 2D+time considered as 3D data. As it can be seen in
the figures this result does not follow the trajectory of the moving
objects but completes according to the smoothness of the shapes: In
the last frame of Fig. 1 the face is not well recovered and in Fig. 2
the fingers are cut (completed by a plane in 2D+time), while in both
cases our operator L correctly completes the shapes. For a quanti-
tative evaluation, we present in Table 1 the root mean squared error
of three methods: our proposal (1) – (2), using L̃ instead of L, and
MBO. Our operator L always provides a smaller error.

MBO [25] L̃ L
alley 1 0.18 0.55 0.06
ambush 4 0.46 0.54 0.26
market 5 0.34 0.23 0.07
shaman 3 (seq.1) 0.25 0.10 0.05
shaman 3 (seq.2) 0.63 0.63 0.48
temple 3 0.23 0.36 0.15

Table 1: Root mean square error of the inpainting results in some
sequences from Sintel dataset [8] using different methods.

We only consider the operator L for the rest of the experiments.
In order to evaluate the sensitivity of our video inpainting method to
the optical flow accuracy, we present results with the same sequence
but with different optical flows, computed using two different optical
flow estimation methods. The seventh row displays the result com-
puted with the optical flow estimated using the NLTV-CSAD energy
functional. The eighth row uses the classical TV-L1 energy. In both
cases the energy is minimized with a recently proposed strategy [30].
The results using the three different optical flows are very similar.

Experiments where an object is removed
Figs. 3 and 4 display experiments where we remove an object that
is occluding another one. Fig. 3 is a sequence formed by the first 8

frame 0012 frame 0013 frame 0014 frame 0015

object to be inpainted (white), object to be removed (gray)

optical flow interpolated inside the inpainting mask

estimated occlusions from the interpolated optical flow

white object inpainted

Fig. 4: Removal of an object in a video sequence (temple2).

frames of the cave 2 sequence from Sintel, and Fig. 4 by 5 frames
(12 to 16) of the temple 2 sequence. The object to be completed is
shown in white in the second row. The inpainting mask, always de-
picted in gray in the second row, corresponds to the segmentation of
the object we want to remove. Notice that this time, as a difference
with the previous experiments, the inpainting mask is not static in
time. In this case we also need to interpolate the optical flow in the
inpainting domain and, for that, we use the method proposed in [29].
The completed optical flow is shown in the third row. The occlusion
map is estimated from this completed flow using the criterion (6).
Before applying the proposed method we inpaint, independently, the
first and last frame with a 2D binary inpainting method (in particu-
lar, the perceptual-based 2D-inpainting method [27]). Then we ap-
ply the proposed video inpainting method that takes into account the
estimated optical flow and occlusion map, and the completed shape
is shown in the last row. Notice how, in Fig. 3, the hole correspond-
ing to the spear is correctly filled and the dragon claw is partially
recovered in frames 5 and 6 although it was completely occluded in
the corresponding frames of the input sequence.

5. CONCLUSIONS

This work proposes a variational method for binary video inpaint-
ing. For that, we follow a threshold dynamics strategy where the
dynamic shape analysis imposes spatial and temporal smoothness
along the visible trajectory of the object by incorporating the con-
vective derivative in a differential operator based on a generalized 3D
gradient. Our proposal allows to keep track of the motion occlusions
among the moving binary objects. We present some experimental
results on the Sintel database containing complex object motion and
occlusions. As future work we plan to study a variational model for
the joint estimation of the shape and optical flow completion.
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