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ABSTRACT

Borehole images are often misaligned due to a depth offset
in the acquisition sensors of a wireline tool. We propose an
algorithm that identifies matching feature points and aligns
the image. One of the main challenges is that imaging pads
have no azimuthal overlap. This has been solved by extrapo-
lating the pixels on the boundary to create a synthetic overlap
that facilitates feature matching. Feature matching is imple-
mented in two stages: first by finding a local correspondence
among feature points and second by performing a global min-
imization with additional regularization constraints on the es-
timated shifts. The method has been successfully used to
align several imaging logs in less than 1 minute whereas a
manual alignment would take 6 hours.

Index Terms— Borehole images, image alignment,
stereo matching.

1. INTRODUCTION

Borehole images are used in the oil and gas industry to un-
derstand and quantify the geology of hydrocarbon reservoirs,
and to optimize strategies for hydrocarbon extraction. The
images can be obtained while a well is being drilled or after
the drilling is completed. In the latter case, a separate logging
tool is lowered into a well on a wireline cable. The formation
is sampled and the measurements are transmitted to the sur-
face. An example of a wireline tool and the measurements are
shown in Fig. 1. The images are made from data from several
pads that sample the formation at different depths along the
tool.

To achieve an accurate reconstruction of wireline images
requires that the tool depth is precisely known. However, due
to the stretching of the cable and uncertainty in the tool ve-
locity, these measurements are distorted. An established tech-
nique to improve the accuracy of tool depth is to use a Kalman
filter to perform a double integration of the acceleration mea-
sured downhole. Due to the limits of measurement precision
and accuracy, significant errors remain. The errors result in
misaligned features on the displayed image, which are man-
ually corrected by shifting the images to create a consistent
set of features. This is a time-consuming process; an accurate

alignment on a 1,000-ft (100,000 scan lines) depth interval
can take up to 6 hours.

The objective of our work is to develop an automated
algorithm that aligns borehole images. In terms of existing
work, this problem is related to stereo matching [1] in which
the aim is to estimate a disparity map between two baseline
images. The main difference between stereo matching and
our problem is that borehole images have no physical overlap
between the individual pads, and the techniques discussed in
the literature cannot be applied. The issue of non-overlapping
images for mosaicing was discussed in [2]. The authors pro-
posed to extrapolate the missing pixels and perform the align-
ment on the extended images. However, this method assumes
a fixed homography mapping, whereas in borehole images,
the mapping is a function of the measured depth.

In the proposed method, we also use image inpainting
to synthesize an overlap between neighboring pads. Feature
matching is then performed in two stages, first by applying
a local matching on the overlap region, followed by a global
minimization with additional smoothness constraints on the
estimated shifts.

This paper is structured as follows. We formulate the
problem in Section 2. The main stages of the algorithm are
described in Section 3. Example results are shown in Section
4, and the paper is concluded in Section 5.

2. PROBLEM FORMULATION

As illustrated in Fig. 1(a), wireline tools are made of a series
of pads located at different depths along the tool. The pads
contain sensor elements that measure a formation property,
typically resistivity or conductivity. The k-th pad on the tool
is defined byPk and the corresponding subimage is expressed
by

Ik (d, θ) , (1)

where d is the measured depth and θ ∈ [0, 2π) is the az-
imuthal location of the sensor. Following acquisition, both
variables are resampled and defined on a discrete grid. As-
suming that the measurements are zero outside the non-
imaged azimuthal locations, the output image I (d, θ) is given
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by

I (d, θ) =

Np−1∑
k=0

Ik (d, θ) . (2)

The image in (2) often appears misaligned since a scan line
from each pad in the image is sampled at a different time by
the tool due to a depth offset between the pads. The objective
is therefore to shift each pad such that the image is aligned.
The resulting image can be expressed as

Ĩ (d, θ) =

Np−1∑
k=0

Ik
(
d+ τk (d) , θ

)
, (3)

where the function τk (d) defines by how much the k-th
subimage is shifted for each depth.

We focus on one particular setup of (3) shown in Fig. 1,
where the number of pads Np = 8 and there are two distinct
depth levels. The even pads {P0,P2,P4,P6} are located at
the same depth (bottom of the tool), and the odd pads are a
certain distance above the even pads. This allows (3) to be
simplified as:

I (d, θ) =

3∑
k=0

I2k (d, θ) +

3∑
k=0

I2k+1 (d+ τ (d) , θ) . (4)

Here, the even pads are chosen as reference, and the odd pads
are aligned to the even pads by searching for a common shift
τ (d). In the following section, we describe how this shift is
estimated.

(a) Wireline logging tool (b) Borehole image

Fig. 1: Borehole images can be obtained with a wireline logging
tool. The logging tool in (a) has eight pads; each of the pads creates
a separate subimage. The full set of eight subimages is shown in (b).
The subimages often appear misaligned due to the depth offset in the
pads.

3. ALGORITHM DESCRIPTION

An overview of the method to estimate the shift is shown in
Fig. 2. To simplify the algorithm description, we assume that

Pad P1
Local

matching
Global

minimization
Shifts
{τi}

Pad P0
Image

extrapolation

Fig. 2: Proposed method to align subimages P0 and P1. In the
first step, the boundary in P0 is extrapolated to create an overlap
with P1. Local feature matching is then performed on the overlap
region. An additional smoothness constraint is imposed in the global
minimization stage, in which the joint cost function is minimized by
the Viterbi algorithm to give the estimated shifts {τi}. The shifts are
used to align the subimage P1 with P0.

only pads P0 and P1 need to be aligned. In the first stage,
the edges in P0 are extrapolated to create an overlap with
the pixels in P1. Given the overlap, a local feature match-
ing can then be implemented. This stage selects a template
around a feature point in P1 and searches for a similar patch
in the extrapolated region of P0 along the depth dimension.
A challenge in local matching is that there may be several
good candidate matches. This is particularly the case in bore-
hole images, where events such as structure and texture are
often repeated along the well trajectory. Hence, minimizing
the cost function locally for each feature point often results in
an incorrectly aligned image.

This issue is solved by imposing a smoothness constraint
on the estimated shifts. The combined local matching and
regularization terms are jointly minimized by a Viterbi algo-
rithm to give the output shift. Finally, the user can validate
the aligned image and insert additional shifts as necessary.
Although not explicitly shown in Fig. 2, the method can also
be rerun with P1 selected as reference. The new shifts can
then be used to evaluate a robust quality control (QC) metric
by crosschecking the results [3].

3.1. Image extrapolation

The image extrapolation stage extends the image boundary in
P0 to create an overlap with the data in P1. Intuitively, this
allows feature matching to be performed on the overlap region
in the subsequent stage. An example of an image before and
after extrapolation is shown in Fig. 3. The extrapolated image
is defined by Î0 (d, θ) .

In general, any image inpainting algorithm can be used to
extend the boundary. We have used a low-complexity kernel
regression method proposed in [4], where the missing pix-
els are estimated as a weighted sum of available neighboring
data. The weights determine the reconstruction and are de-
fined by the intersection of a Gaussian kernel at the location
of the missing pixel. The parameters of the kernel are esti-
mated from local image gradients, and this ensures that the
extrapolation is in the direction of local edges.
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P0 P1

(a) Input pad images

Extrapolated
pixels

(b) Extrapolated pixels

Fig. 3: Extrapolating the boundary of P0 allows local matching to
be performed on the overlap region. The input pads P0 and P1 are
shown in (a). In (b) the boundary in P0 is extrapolated to create an
overlap with P1 using [4]. The inpainted pixels are illustrated by the
lower-opacity segment. Local matching can then be applied along
the dashed line in the overlap region.

3.2. Local matching

The aim is to find a correspondence between the extrapolated
pixels in P0 and P1 along the dashed line in Fig. 3(b). The
matching is performed at Nf feature points, where the loca-
tion of the i-th feature point is (di, θi). The feature points can
be evenly spaced along the dashed line in the overlap region,
or non-uniformly distributed at horizontal edges1.

For each feature point, the method selects a patch of data
centered at (di, θi) in P1 and searches for a similar patch in
the extrapolated pixels of P0. Metrics to measure patch sim-
ilarity is a highly researched topic [1]. The metrics can take
into account the pixel intensity or edge information [5], or
they can be an aggregation of several models [6]. To limit the
computational burden, we have used the following absolute
difference metric:

Ji (τi) =
∑

(d,θ)∈W(di,θi)

∣∣∣Î0 (d, θ)− I1 (d+ τi, θ)
∣∣∣ , (5)

whereW (di, θi) is a window of size (Nd ×Nθ) centered at
the feature point (di, θi).

The local matching cost in (5), especially in the case of
borehole images, contains many local minima. Therefore,
minimizing the cost function directly for each feature point
will often give an incorrectly aligned image. We discuss how
this problem can be solved in the following section by impos-
ing a smoothness constraint on the estimated shift.

3.3. Global minimization

It is common practice to impose a smoothness constraint on
the estimated shift in stereo matching algorithms [1]. This

1Horizontal edges are easier to match since they are less sensitive to
extrapolation errors than smooth regions or vertical edges.

technique takes into account prior knowledge about the dis-
parities and significantly improves the matching result. We
use a similar approach in our problem and define a global
cost function as

J
(
τ1:Nf

)
=

Nf∑
i=1

[Ji (τi) + λf (τi)] , (6)

where τ1:Nf
is a set of shifts across all feature points, f (τi)

is the new regularization term, and λ is a constant that deter-
mines the trade-off between the local matching cost and the
regularization term. It is evident that when λ = 0, the cost is
equivalent to a local matching in (5).

The regularization term f (τi) can be specifically de-
signed for borehole images. In our formulation, it has the
following form:

f (τi:i−1) = fS (τi:i−1) + fT (τi:i−1) , (7)

where fS (τi:i−1) is a smoothness constraint and fT (τi:i−1)
is an additional penalty term to enforce an invertible mapping.
The first term is expressed as:

fS (τi:i−1) = g (|di − di−1|) |τi − τi−1| , (8)

where g (x) is a monotonically decreasing function with
g (0) = 1. The estimated shifts are typically smooth, but
occasionally there may be significant transitions due to sud-
den changes in the tool dynamics. This analysis supports
using an `1 penalty term. The additional weighting by the
g (·) function has been added to take into account the nonuni-
form spacing in the feature points. The scaling factor adds a
large penalty to closely spaced feature points and reduces the
regularization when |di − di−1| � 0.

The second penalty term fT (τi:i−1) ensures that there ex-
ists a bijection mapping between the original and shifted fea-
ture points. In most cases this assumption is satisfied since
the logging tool is only moving in one direction. It can be
shown that the mapping is invertible if the inequality

di + τi > di−1 + τi−1 (9)

is satisfied. We enforce this constraint by setting the regular-
ization

fT (τi:i−1) = λ1 [(di + τi)− (di−1 + τi−1)]
2 (10)

if (9) does not hold and zero otherwise. Here λ1 � 0 is
a large constant that sufficiently penalizes the cost function.
Note that in traditional stereo matching, this condition is not
applied because objects can be occluded due to scene geome-
try.

In the stereo matching community, the most widely used
methods to minimize (6) is belief propagation or graph cuts
[1][7]. In our formulation, we have used the Viterbi algo-
rithm, which is a special case of belief propagation as dis-
cussed in [8]. The main idea of Viterbi is that, although
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Fig. 4: Comparison between (a) input image and (b) aligned result.

the solution space grows exponentially with each new feature
point, many of the solutions are suboptimal and do not need
to be considered during minimization. The algorithm itera-
tively minimizes (6) at each feature point by only taking into
account the feasible set. Finally, once all the feature points
are considered, the path through the solution space (out of
the feasible solutions) that has the lowest cost is taken as the
output shift.

4. DISCUSSION

The proposed algorithm is available as a plug-in in the
Techlog∗ wellbore software platform. The method has been
tested on numerous datasets and has been shown to signifi-
cantly reduce the processing time in comparison to manual
alignment. As an example, the method aligned an 800-
ft log (80,000 scan lines) in 60 seconds (Intel i7 CPU @
3.00GHz). Reviewing the results, only two 5-ft data intervals
were deemed as incorrectly aligned. As a comparison, a man-
ual alignment of the same log would take 6 hours to complete.
Two data intervals from this log are shown in Figs. 4 and 5.
In both cases, the perceptual quality of the aligned image is
significantly improved. The corresponding estimated shift to
align the images is shown in Fig. 6.

The algorithm may have limitations in regions where the
image has been corrupted or cannot be visually aligned. An
image-based alignment may not be possible if the image has
only vertical features. However, after the algorithm is run,
these regions can be easily identified by the QC metric, where
the crosscheck between forward and backward alignment will
indicate an error. The user can then increase the regularization
parameter λ or manually align the intervals.

∗Mark of Schlumberger.

D
ep

th
[li

ne
nu

m
be

r]

0

250

500
3601800

Azimuthal angle [◦]

(a) Input image

D
ep

th
[li

ne
nu

m
be

r]

0

250

500
3601800

Azimuthal angle [◦]

(b) Aligned image

Fig. 5: Comparison between (a) input image and (b) aligned result.
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Fig. 6: Estimated shift using proposed method; (a) aligns Fig. 4(a)
and (b) aligns Fig. 5(a).

5. CONCLUSION

This paper proposed an automated algorithm to align features
in borehole images from wireline logging tools. The method
first extrapolates the image boundaries to create an overlap
region between the pads. Feature matching is then performed
on the overlap region in two stages. A local matching is run on
finite set of feature points to identify possible candidate solu-
tions. The local solutions may have many local minima due to
repeating patterns in borehole images. To find a consistent re-
sult across all the feature points, the method performs a global
optimization with additional constraints on the smoothness of
the estimated shift. The full method has been implemented
as plug-in in the Techlog∗ wellbore software platform and
tested on several challenging datasets. In comparison to man-
ual alignment, the algorithm can reduce the processing time
for a 1,000-ft image log (≈ 100, 000 scan lines) log from 6
hours to 1 minute. Future work includes improving the align-
ment for images with no crossing features between the pads
and low-quality data.
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