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ABSTRACT

Total variation (TV) and non-local patch similarity have been
used successfully to enhance the performance of compressive
sensing (CS) approaches. However, such techniques can of-
ten remove important details in the image or introduce recon-
struction artifacts. This paper presents a novel CS method,
which uses an adaptive reweighted TV strategy to better pre-
serve image edges. Our method also leverages the redundancy
of non-local image patches through the use of weighted low
rank regularization. An optimization strategy based on the
ADMM algorithm is used to reconstruct images efficiently.
Experimental results show our method to outperform state-
of-the-art CS approaches, for various sampling ratios.

Index Terms— Compressive sensing, Total variation,
Reweighted TV, Non-local self similarity, Low rank, ADMM.

1. INTRODUCTION

Compressive (or compressed) sensing (CS) has been widely
exploited in image processing, with numerous applications in
photography [1], video [2], spectral imaging [3] and medical
imaging [4, 5]. The key idea of this technique is that, if the
sampling matrix satisfies a condition known as the restricted
isometry property (RIP), a sparse signal can be accurately
reconstructed from undersampled measurements [6–8]. For-
mally, the model for reconstructing an image x ∈ Rn from
measurements y ∈ Rm can be formulated as

y = Φx+ ν, (1)

where Φ ∈ Rm×n is a known measurement operator, and ν is
additive noise (e.g., Gaussian, Rice, etc.).

In most CS methods, the task of recovering x is defined
as an inverse problem:

x̂ = argmin
x

1

2
‖Φx− y‖22 + λΨ(x), (2)
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where Ψ(x) is a regularization prior, and λ is a parameter con-
trolling the trade-off between data fidelity and the regulariza-
tion of x. Generally, the regularization prior is based on the
principle that x is sparse under some suitable transform such
as wavelets [9]. Another popular regularization approach is
total variation (TV) [9, 10], which is represented as:

TV(∇x) =

n∑
i=1

√
(∇1xi)2 + (∇2xi)2. (3)

Because this approach penalizes gradients uniformly, it may
result in the loss of image details like edges. To overcome this
problem, a reweighted TV model was proposed in [7], where
the gradient of a pixel i is penalized according to a weight wi,
i.e.

TV(∇x,w) =

n∑
i=1

wi
√

(∇1xi)2 + (∇2xi)2. (4)

Weights w are updated iteratively from x in such a way that
regions with sharp gradients (e.g., edges) are less penalized
than uniform ones:

wt+1
i =

1

‖∇xti ‖2 + ε
, (5)

where ε is a small positive constant.
Another strategy to improve reconstruction is to exploit

the redundancy of local patterns in the image, represented
as small patches of pixels [11–14]. In this strategy, groups
of similar patches are regularized by applying a sparsifying
transform, for instance based on wavelets [13] or dictionary
learning [14]. Similar patches can also be regularized us-
ing the fact that matrices having these patches as columns or
rows have a low-rank [12, 15]. While CS methods based on
patch similarity can significantly improve the reconstruction
when few samples are available, they also have the tendency
to over-smooth images by “averaging” similar patches [16].

Motivated by the aforementioned observations, we present
a novel CS method based on reweighted TV and weighted
low-rank regularization of similar patches. The main contri-
butions of our work are as follows:
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1. The proposed method is, to our knowledge, the first one
to combine reweighted TV and weighted nuclear norm
regularization in a single model. As shown in our ex-
periments, our method outperforms state-of-the-art CS
approaches by providing a more accurate reconstruc-
tion;

2. We also present an innovative reweighting strategy for
TV, in which only the most important image gradients
are considered. Compared to the reweighted TV ap-
proach of [7], our strategy produces images having less
reconstruction artifacts;

3. Finally, an efficient optimization technique, based
on the Alternating Direction Method of Multipliers
(ADMM) algorithm, is proposed to reconstruct an im-
age from sparse measurements.

The rest of this paper is organized as follows. In Sections
2 and 3, we present our CS image recovery model and the op-
timization process used to reconstruct images. Section 4 then
evaluates the proposed method on several benchmark images.
Finally, we conclude the paper by summarizing the contribu-
tions and results of this work.

2. THE PROPOSED RECONSTRUCTION MODEL

We first present our novel reweighting strategy for TV, and
then describe how this model can be enhanced by adding a
regularization of similar patches based on the weighted nu-
clear norm.

2.1. TV reweighting strategy

In some cases, the reweighting approach described in Eq.
(4) and (5) can incorporate low-frequency information from
smooth regions in the gradient regularization. An example
of this can be seen in Fig. 1(a), where noticeable gradient
magnitudes are found in uniform regions corresponding to
the woman’s face and hand. As shown in our experiments,
this problem may lead to the introduction of false textures
and edge-like artifacts in the reconstructed image.

To avoid this problem, we propose a new reweighting
strategy, inspired by the pre-processing technique used in [17]
for the super-resolution problem. The key idea of our strategy
is to decompose the current gradient image∇xt into a smooth
(i.e., low frequency) component Y t and a residual component
Zt, the latter used to define the TV weights. The smooth
component can be obtained by solving the following decon-
volution problem:

argmin
Y

‖∇xt − flow ⊗ Y ‖22 + κ
∑
d

‖gd ⊗ Y ‖22. (6)

In this formulation, flow is low pass filter of size 3 × 3 and
gd = [1,−1] is the gradient operator along direction d ∈ {1 =
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Fig. 1. (a) Gradient magnitudes and (b) residual component
magnitudes.

horizontal, 2 = vertical}. The solution to this problem can
be obtained efficiently using the FFT operator F , i.e.

Y t = F−1
(

F(flow) ◦ F(∇xt)
F(flow) ◦ F(flow) + κ

∑
d F(gd) ◦ F(gd)

)
,

(7)
where “·” is the complex conjugate operator, “◦” the component-

wise multiplication, “··” the component-wise division, and κ
is a user-defined parameter. The residual component is then
obtained as

Zt = ∇xt − flow ⊗ Y t. (8)

Finally, Zt is used to update TV weights as follows:

wt+1
i =

1

‖Zti‖2 + ε
. (9)

Figure 1(b) shows the magnitudes of the residual compo-
nent obtained by Eq (8). We can see that smooth regions like
the woman’s face and hand have smaller values than the gra-
dient magnitudes of Fig. 1(a).

2.2. Weighted nuclear norm regularization

As in most non-local self similarity (NSS) approaches [12,
15, 18, 19], we use a patch based model to reconstruct x. Let
pi ∈ Rd be the

√
d×
√
d patch centered on pixel i, and define

as Si the patch selection matrix such that pi = Six. Note that
patches from neighbor pixels overlap, thereby adding robust-
ness to the reconstruction process. Moreover, let Pi be the
matrix having as columns the k most similar patches to pi, k
being a user-defined parameter.

We exploit the redundancy of similar patches using a low-
rank regularization approach. To avoid losing fine details
in the reconstruction process, we approximate the rank of
similar patch matrices using the weighted nuclear norm [18]:
WNN(P ) =

∑
j ωjσj , where σj is the j-th singular value of

P such that σj ≤ σj+1, and ωj is its corresponding weight.
Because larger singular values typically encode more mean-
ingful information than smaller ones, following [18], we de-
fine weights ωj so that components corresponding to larger
singular values have less shrinkage, i.e. ωj = 1/

(
σj + ε

)
,

where ε is a small positive constant to avoid division by zero.
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2.3. Combined regularization model

Combining the proposed reweighted TV model with the
weighted nuclear norm regularization of similar patches, the
image recovery task can be formulated as the following opti-
mization problem:

argmin
x

1

2
‖y − Φx‖22 + λTV(∇x,w) + γ

n∑
i=1

WNN(Pi)

s.t. pi = Six, i = 1, . . . , n. (10)

Here, λ and γ are user-defined parameters controlling the
trade-off between data fidelity, reweighted TV regularization,
and weighted nuclear norm regularization. The following sec-
tion presents an efficient technique to solve this problem.

3. RECOVERING THE IMAGE

To recover image x in Eq. (10), we use an iterative optimiza-
tion strategy based on the Alternating Direction Method of
Multipliers (ADMM) algorithm [20]. This algorithm sepa-
rates a hard-to-solve problem into several sub-problems, by
introducing constrained auxiliary variables z = ∇x andQi =
Pi, i = 1, . . . , n, and reformulating the problem as:

argmin
x, z,Qi
ai, Bi, c

1

2
‖y − Φx‖22 + λTV(z, w) + γ

n∑
i=1

WNN(Qi)

+
µA
2

n∑
i=1

‖pi − Six+ ai‖22 +
µB
2

n∑
i=1

‖Qi − Pi +Bi‖22

+
µC
2
‖z −∇x+ c‖22 (11)

Here, ai, Bi, i = 1, . . . , n, and c are the Lagrangian multi-
pliers of each constraint, and µA, µB , µC are the correspond-
ing meta-parameters. In practice, ADMM approaches are not
very sensitive to the choice of these meta-parameters, which
mostly affect the convergence of the solution [20].

Since the cost function of Eq. (11) is convex with respect
to each parameter, we can optimize it by updating each pa-
rameter iteratively until convergence is reached. Assuming
all other parameters are fixed, image x can thus be updated
by solving the following problem:

argmin
x

1

2
‖y − Φx‖22 +

µA
2

n∑
i=1

‖pi − Six+ ai‖22 (12)

+
µC
2
‖z −∇x+ c‖22,

the solution of which is given by

x =
(

Φ>Φ + µA

n∑
i=1

S>i Si + µC∇>∇
)−1

(
Φ>y + µA

n∑
i=1

S>i (pi + ai) + µC∇>(z + b)
)
. (13)

Algorithm 1: The proposed CS method
Input: The measurements y and sampling matrix Φ;
Output: The reconstructed image x;

Initialize x using DCT based CS ;
Set wi := 1, ai := 0, Bi := 0, i = 1, . . . , n, c := 0;

while not converged do

Extract patches pi from x;
Find groups of similar patches Pi for each pixel i;
Update Qi, i = 1, . . . , n, using Eq. (15);
Update z, by solving Eq. (17);
Update image x using Eq. (13);
Update w using Eq. (9) ;
Update Lagrangian multipliers using Eq. (18);

return x ;

Because the matrix to invert is fixed, it can be factorized
offline with Cholesky factorization. After this pre-processing
step, x can be updated efficiently through backward/forward
substitution [21]. Moreover, when Φ is orthogonal (e.g.,
Fourier transform), the system becomes block tridiagonal
and can be solved in linear time using a generalized Thomas
algorithm [22].

The task of updating Qi, i = 1, . . . , n, corresponds to the
following problem:

argmin
Qi

λWNN(Qi) +
µB
2
‖Qi − (Pi −Bi)‖2F . (14)

This problem can be solved using the weighted singular value
thresholding operator [18]:

Qi = U ·
(

Σ − λ

µB
Diag(ω)

)
+
· V >, (15)

where UΣV > is the SVD decomposition of Pi − Bi and
(·)+ = max{·, 0}.

To update the gradient auxiliary variable z, we consider
the following problem

argmin
z

λTV(z, w) +
µC
2
‖z − (∇x− c)‖22. (16)

Let ui = ∇xi− ci, this problem can be solved independently
for each pixel i via group shrinkage:

zi =
(√

u2i1 + u2i2 − λ
µC

)
+
· ui√

u2i1 + u2i2
. (17)

Finally, the Lagrangian multipliers can be updated follow-
ing the standard ADMM approach:

at+1
i = ati + (pti − Sixt), i = 1, . . . , n,

Bt+1
i = Bti + (Qti − P ti ), i = 1, . . . , n,

ct+1 = ct + (zt −∇xt). (18)
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Fig. 2. The six benchmark images used in our experiments.

The whole reconstruction process is summarized in Algo-
rithm 1.

4. EXPERIMENTS

We evaluate the proposed method on the six benchmark im-
ages of Fig. 2 and compare it to standard TV reconstruc-
tion [23], as well as two state-of-the-art CS approaches: NL-
RCS [12], and SAISTCS [15]. The implementation of these
approaches were obtained from their authors’ website 1,2. The
performance of the four tested methods was measured using
Peak Signal to Noise Ratio (PSNR) and Structure Similarity
Index (SSIM) [24].

Table 1. Mean accuracy (± stdev), in terms of PSNR (db) and
SSIM, obtained by the tested methods for different sampling
ratios. Values correspond to the average computed over the
six images of Fig.2.

Sampling
ratio TV NLRCS SAISTCS OURS

15 % 23.79± 1.54 26.24± 2.19 27.61± 2.51 28.12± 2.63
0.704± 0.038 0.890± 0.034 0.922± 0.011 0.930± 0.008

20 % 28.61± 2.54 36.18± 3.61 37.73± 2.28 38.20± 1.86
0.783± 0.042 0.954± 0.019 0.965± 0.009 0.969± 0.009

25 % 30.77± 2.64 39.33± 2.65 40.04± 1.57 40.43± 1.37
0.833± 0.036 0.973± 0.006 0.975± 0.004 0.976± 0.004

30 % 32.65± 3.07 41.10± 2.16 41.24± 1.61 41.58± 1.37
0.870± 0.038 0.979± 0.005 0.979± 0.005 0.980± 0.007

Our method’s parameters were tuned using a different set
of images, and set as follows: 6×6 for the patch size, k = 45
for the number of similar patches, λ = 1.8 and γ = 0.9 for
the trade-off parameters, and κ = 50 for the TV reweight-
ing strategy. The ADMM parameters were set empirically to
µA = µB = µC = 1.

Table 1 gives the mean reconstruction accuracy, in terms
of PSNR and SSIM, obtained by the tested methods on the
six benchmark images, for different numbers of random sam-
ples (measured as the ratio between the number of samples
and total number of pixels). We see that our method outper-
forms all other approaches, for every sampling ratio and per-
formance metric. Based on a paired Wilcoxon signed-rank
test, these results are significant in all but four combinations
of sampling ratio and accuracy metric, with p < 0.05. The
advantage of our method over competing approach is partic-
ularly important for low sampling ratios, suggesting the use-

1http://see.xidian.edu.cn/faculty/wsdong/
2http://www.csee.wvu.edu/˜xinl/

a) TV b) NLRCS c) SAISTCS d) Ours

0 0.05 0.1 0.15 0.2 0.25

e) TV f) NLRCS g) SAISTCS h) Ours

Fig. 3. Example of reconstructed images and residual errors
obtained by the tested methods for a sampling ratio of 15%.

fulness of combining the reweighted TV and patch similarity
regularization priors.

Figure 3 shows an example of reconstructed images and
residual errors obtained by the tested methods for a sampling
ratio of 15%. We observe that the proposed method leads
to fewer reconstruction artifacts than other CS approaches.
Moreover, our method provides a more accurate reconstruc-
tion of textured regions, such as the one showed in the zoomed
area.

5. CONCLUSION

We presented a novel compressive sensing method that com-
bines reweighted TV and the weighted nuclear norm regu-
larization of similar patches in a single model. This method
uses an innovative TV reweighting strategy, which reduces
reconstruction artifacts by removing low frequency informa-
tion. An efficient optimization strategy, based on the ADMM
algorithm, was proposed to recover the image from under-
sampled measurements. Experiments on benchmark images
have shown our method to outperform state-of-the-art CS ap-
proaches, for various sampling ratios.
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