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ABSTRACT

A novel HEVC-based efficient video denoising algorithm is

proposed in this paper. It uses a spatial Gaussian filter for the

chrominance components and then utilizes the HEVC motion

estimation process to find the best temporal correspondence

for low-pass filtering. Other HEVC tools such as quantiza-

tion, the interpolation and the in-loop filters are also used.

Experiments implementing the proposed algorithm in the

open-source HEVC encoder x265 showed a good denoising

performance with a much lower computing complexity than

the competitors. The performance was comparable to those

highly sophisticated algorithms such as the VBM4D, which

is 200 times slower. The proposed algorithm can be easily

integrated into the real-world video processing systems due

to its compatibility with the HEVC standard.

Index Terms— Video Denoising, HEVC, Spatial-Temporal

Filter

1. INTRODUCTION

Noise is inherent to the acquisition, processing and trans-

mission of digital videos. For example, the imperfection of

the CCD and CMOS sensors as well as the A/D, D/A pro-

cesses will often introduce noise to the video signal, which

causes abnormal variations in spatially neighboring pixels

that can be easily noticed and cause perceptual quality degra-

dations. In addition, due to its random nature, video noises

will lessen the efficiency of video encoders required for video

transmission and/or storage. Therefore, video denoising is a

critical challenge for high quality efficient video applications.

The color videos are generally captured using an array of

color sensors for the different color channels. The noise gen-

erated by the sensors are often considered to be independent

of each other, and modeled as an additive zero-mean Gaussian

white noise on top of the pixel values of the color channels.

Existing algorithms for video denoising can be roughly

divided into pixel domain and transform domain algorithms.

Pixel domain denoising algorithms usually rely on similarities

between spatially or temporally neighboring pixels. Weighted

averaging based spatial and/or temporal low pass filtering is
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used to reduce the noise while preserving video details. Be-

cause the temporal similarity assumption might be invalid af-

ter scene changes or for high motion clips, the strength of the

temporal filtering must be made adaptive. Adaptive temporal

averaging methods usually work by first assessing the level

of temporal similarities to determine the pixels whether to be

temporally averaged. Examples of adaptive temporal averag-

ing include the ATA denoising [1] and the hqdn3d denoiser in

GPLv2, both of which have been incorporated into the well-

known open source multimedia tool ffmpeg [2]. To improve

the accuracy of temporal averaging by pin-pointing temporal

similarities, motion estimation (ME) is usually used to find

the best match region in the temporally neighboring frame.

On the other hand, transform domain denoising has be-

come one of the most popular topics in the last decade. Such

algorithms would first transform the original RGB signal into

another domain. Classification of the features in the transform

domain (e.g. maximum likelihood, Bayesian estimation) de-

termines whether and how to denoise the video. The wavelet

transform and its various extensions are the most widely used

transforms in the transform domain denoising. Such algo-

rithms include over-complete wavelet denoising (owdenoise)

in the ffmpeg software, SEQWT [3] and WRSTF [4]. In addi-

tion to the wavelet transform, the latest denoising algorithms

such as VBM3D [5] and VBM4D [6] designed some other

novel transforms and produced a much better performance

than SEQWT and WRSTF.

In this paper, we proposed an efficient video denoising

algorithm using HEVC [7] video coding tools, especially

the highly effective HEVC ME tools for improved temporal-

spatial averaging, as well as quantization, the interpolation

and in-loop filters. Experiments implementing the proposed

algorithm into the open source HEVC encoder x265-v1.9 [8]

showed that the proposed algorithm, despite its simplicity,

achieved comparable denoising performance when compared

with many widely used denoising algorithms, some of which

are orders of magnitudes slower.

The remainder of this paper is organized as follows. Sec-

tion 2 describes the proposed algorithm in detail. Section 3

presents the performance of the proposed algorithm and its

comparison with some widely used algorithms. Section 4

concludes the paper.
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2. PROPOSED ALGORITHM

Fig. 1 gives the flow diagram of the proposed denoising

algorithm, which will be described in detail in the following

subsections.

Fig. 1: Flow Diagram of the Proposed Algorithm

2.1. Color Space Transform

The RGB color model is an additive color model in which

red, green and blue lights are added together in various ways

to reproduce different colors. The three channels are respec-

tively captured, quantized and stored, though there exist a

strong correlation and therefore high redundancy among these

three channels. To reduce the redundancy, the YUV model

was designed for the compression, storage and transmission

of the digital videos. In the model, the Y component repre-

sents the luminance while U/V are the chrominance compo-

nents,
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In addition to removing redundancy, the transform from

the RGB to the YUV model can also help reduce the noise.

The independent zero-mean white additive Gaussian noises

can be filtered by the weighted averaging in the conversion,

so that the noisy version of the YUV components (YnUnVn)

can be expressed as

Yn = Y +N(0, 0.45σ2), (2)

Un = U +N(0, 0.39σ2), (3)

Vn = V +N(0, 0.43σ2), (4)

where Y UV represent the noise-free input and σ is the stan-

dard deviation of the zero-mean white additive Gaussian noise

in the RGB domain. N(µ, σ2) is a Gaussian signal with the

expected value as µ and the variance as σ2. As can be seen in

Equation 4, the noise level in the YUV space is much lower

than that in the RGB space.

The reduction in noise level in the RGB to YUV con-

version improves the accuracy of the ME process in subse-

quent processing, which allows for improved denoising re-

sults. Even though the YUV signal will need to be converted

back to the RGB space, a process that increases the noise de-

viation, due to the improved denoising performance, the over-

all end-to-end quality is still improved.

2.2. HEVC Based Denoising

Due to their low energy levels, in real-world video ap-

plications, the UV channels are usually down-scaled to 1/4

of the spatial resolution of the Y channel before processing,

resulting in the YUV420p format of digital image or video.

When the information contained in the UV components is

very limited with the spatially neighboring pixels highly cor-

related, a simple spatial filter (e.g. the Gaussian filter) can

already achieve good denoising results for the UV compo-

nents with relatively low complexity. To verify this insight,

experiments employing the down-sampling and Gaussian fil-

ter on the YUV components of YUV444p video clips were

conducted. The clips were downloaded from [9] and con-

tained a fairly wide range of different characteristics (i.e. dif-

ferent levels of texture).

According to the results in Table 1, the filtered and down-

sampled videos could still maintain a high Peak signal-to-

noise ratio (PSNR) value (around 38dB, much higher than

the PSNRs for the noisy videos, which are generally around

25dB) for the UV components, while the distortion for the Y

component is much greater. From the results, it seems that a

3×3Gaussian filter is sufficient to maintain a high UV fidelity

while simplifying the denoising process. Due to the high dis-

tortion caused by the missing details, the Y component should

generally be processed in full resolution.

Because the Y channel contains most of the visual infor-

mation, details in the Y component frames must be preserved

while effectively removing noise. But the spatial filter on

the Y component can still sometimes help reduce the noise

with limited loss in detail when the original details have al-

ready been destroyed by the strong noise. To this end, we

proposed a noise estimation based adaptive spatial filtering

process for the Y frames. A weak spatial filter heavily cen-

tered around the current pixel (corresponding to a weight of

60%) will be attempted periodically (1s in the experiment) or

when a scene change is detected. The PSNR is calculated be-

tween the frames before and after the filtering for the YUV

components. Table 1 proves that the PSNR value of the Y

channel after being filtered by the same filter should be much

lower than the U/V due to the rich details in the Y channel.

Therefore, the level of texture can be considered low when

the PSNR value of the Y component filtered by a weak filter

is greater than the PSNR values of UV channels. In that case,

this weak spatial filter will be used for the Y channel frames

in the next period.

Table 1: Information of YUV Components

Method Down-Sampling 3x3 Gaussian

PSNR Y U V Y U V

IntoTree 32.82 38.34 40.74 33.87 39.14 41.30

OldTown 32.18 38.44 40.53 33.07 39.24 41.11

ParkJoy 25.27 34.02 37.73 26.31 34.92 38.59

Ducks 27.38 34.00 38.79 28.46 35.04 39.70
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After the adaptive spatial filtering, HEVC ME is used to

find the best match for each block for the subsequent temporal

filtering. As the latest and state-of-the-art video coding stan-

dard, HEVC has the most advanced set of motion estimation

tools for identifying block based temporal correspondences.

The HEVC ME introduces a well-studied 7-tap interpolation

filter for conducting sub-integer precision motion estimation

and compensation. The interpolation filter can also improve

the signal to noise ratio as the values of neighboring pixels

are correlated while the neighboring noise samples are much

less so, if not completely independent. Through experiments

we found that the block-distortion based ME can achieve bet-

ter results than feature based ME algorithms like optical flow

based object tracking [10]. This is partially due to the fact

that any structural feature can be easily distorted by the noise,

rendering feature based algorithms undesirable. In our exper-

iments, the ME distortion is defined as

D =
∑

pixel i

(si + ni − ri − rni)
2,

=
∑

pixel i

(si − ri)
2 +

∑

pixel i

(ni − rni)
2

+ 2
∑

pixel i

(si − ri)(ni − rni), (5)

where s, r, n, rn,D are the noise-free block to be encoded,

the noise-free reference block, the noise of the current block,

the noise of the reference block and the distortion using the

current motion vector respectively. Since n and rn are zero-

mean and independent from each other, the expectation of the

distortion

E(D) = Dorg + σ2

n + σ2

rn, (6)

where Dorg, σ
2

n and σ2

rn are the distortion if noise-free, the

variance of n and the variance of rn respectively. As the dis-

tortion is the sum of a constant value, a Gaussian signal and a

chi-square signal, there is a high probability for the ME pro-

cess to find the best or an approximately best correspondence

(reference) block. In contrast, those structurally different ref-

erence blocks will not be chosen due to the high Dorg value.

The HEVC ME process would recommend a best candi-

date for each reference frame. Due to scene changes, inappro-

priate ME settings such as the limited search range, as well as

noise, those candidates may not be of sufficient quality from

time to time. To mitigate this problem, the rate-distortion cost

based scene change detection algorithm in x265 was used

to reject references from a different scene. In addition, the

noise and the limited search range may lessen the accuracy of

the ME. The statistics of the distortions of the candidates is

made, so that a candidate with a distortion 20% (a well-tuned

threshold) higher than the statistical average will be excluded

from the subsequent weighted averaging. Since the different

scenes sometimes might own completely different character-

istics, the statistics will be cleared at the beginning of each

scene and then the new initial value will be set as the average

distortion caused by the spatial filter above. After the elim-

ination, the remaining candidates will be assigned with the

weight (W ) calculated using the following formula for the

weighted averaging,

W =
1

D ·∆T
, (7)

where D and ∆T are the distortion of the candidate and the

difference in display time between the current frame and the

reference frame. The candidates of higher distortion or longer

temporal distance ought to have a lower correlation with the

current block and therefore a smaller weight. The weight of

the current block is the sum of the reference weights to avoid

over-aggressive denoising.

After the weighted averaging, the HEVC encoding will

proceed to transform, quantization and the in-loop filters in-

cluding the deblocking filter and the sample adaptive offset

(SAO) filter [11]. Because the energy of natural video signals

is usually clustered in low frequency coefficients, the quan-

tization coefficient in HEVC is coarser for high frequency

components. In contrast, for Gaussian noise, energy will be

fairly uniformly distributed among the different frequencies.

The use of the HEVC quantization will lead to significant de-

crease of the strengths of the high frequency components of

the noise signal, while doing little damage to the visual signal.

The HEVC common test condition [12] requires four QP

values (22, 27, 32, 37) to be tested, with a QP value less than

22 representing good quality. In the proposed denoising algo-

rithm, the QP value first needs to be small enough to preserve

the low frequency visual information, but less high frequency

noise will be filtered in quantization with the QP value grow-

ing smaller. Through the massive experiments, QP=20 pro-

vides the best tradeoff between the visual distortion and the

noise reduction among the QP values from 15 to 22. Af-

ter quantization, the deblocking and the SAO filters are ap-

plied to repair and smoothen discontinuities between pixels

and blocks to improve the overall visual quality.

3. EXPERIMENTS RESULTS

To evaluate the denoising performance and efficiency of

the proposed algorithm, we implemented the algorithm in

the latest x265 HEVC encoder v1.9. Five CIF (352×288)

sequences frequently used in the papers on video denoising

were tested. Each input clip was contaminated with three

levels of zero-mean white additive Gaussian noise, with the

standard deviation set at 10, 15 and 20 as most of the denois-

ing publications did. Besides the proposed algorithm, several

other state-of-art denoising algorithms were also tested for

comparisons, including hqdn3d and owdenoise in ffmpeg, the

new and high quality VBM4D, as well as the algorithms in

commercial software or software packages such as NeatVideo
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Table 2: PSNR Values of Videos Denoised Using the Proposed Algorithm and the Competitors
Videos Foreman (352x288) Garden (352x240) Miss America (360x288) Salesman (352x288) Tennis (352x240)

AVG FPS
σ 10 15 20 10 15 20 10 15 20 10 15 20 10 15 20

hqdn3d 33.27 29.30 26.66 33.09 29.23 26.64 33.37 29.34 26.68 33.27 29.30 26.67 33.23 29.29 26.66 29.73 300

owdenoise 33.63 29.77 27.10 33.47 29.68 27.05 33.68 29.80 27.11 33.60 29.76 27.09 33.56 29.74 27.08 30.14 4.2

VBM4D 41.34 39.53 38.27 36.01 34.99 34.04 43.50 42.34 41.30 40.31 38.30 36.76 37.54 35.20 33.31 38.18 0.5

NeatVideo 40.29 39.49 38.42 30.11 29.89 29.56 44.22 42.76 41.40 38.66 38.01 37.18 35.60 35.07 34.97 37.04 25

MSU 38.81 36.72 35.48 31.93 30.07 28.75 41.17 39.12 37.85 38.91 36.82 35.27 36.88 35.07 33.72 35.77 80

Proposed 39.61 37.84 36.48 35.90 33.78 32.10 43.31 41.49 39.04 39.66 37.44 36.03 38.42 35.75 33.51 37.36 100

(a) original image frame (b) noisy frame (σ = 20) (c) Proposed

(d) VBM4D (e) MSU (f) NeatVideo

Fig. 2: Denoising results of “Garden” sequence corrupted with a noise, standard deviation σ = 20.

(employed by Premiere, After Effect and FinalCut) v4.2 re-

leased in July 2016 [13] and the MSU Denoiser v2.5.1 [14].

The denoising performance is measured by the PSNR

value between the denoised video and the original noise-free

video in the YUV domain. All algorithms ran on a single

thread of an Intel Core i3-4170 CPU running the Windows 10

operating system with a RAM of 8 GB without the GPU ac-

celeration. Only the key HEVC tools relevant to the denoising

task were used, including the fractional pixel level ME, quan-

tization and in-loop filters, while the other time-consuming

tools like the quad-tree structure, multiple partitions and

RDOQ were disabled.

Table 2 gives the denoising performances of these algo-

rithms. The results of the proposed algorithm and the best per-

formance for each test case (i.e. each column) are displayed in

bold font. The VBM4D method (written in C language) could

always produce the best or second-best results, but ran at an

extremely low speed of 0.5 frames per second (fps), for the

small resolution CIF video. It would require nearly 20 min-

utes to denoise a 1-second 1080p clip, or about 1/1200 real

time speed, making it infeasible for real-world applications

even if SIMD optimizations were introduced. On the other

hand, NeatVideo and MSU denoiser were much more efficient

than VBM4D, but their performances were highly dependent

on the characteristics of the input. For example, NeatVideo

ranked first for “Miss America” but bottom for “Garden”.

In contrast, the proposed algorithm showed a robust

and efficient performance, which is better and faster than

NeatVideo and MSU, with a quality close to VBM4D but

ran 200 times faster. Fig. 2 illustrates the effectiveness of

the proposed denoising algorithm for sequence “Garden”

contaminated by a noise with the standard deviation set as

20. There was no longer visible noise in the denoised image

after using the proposed denoising algorithm and most of the

details were well maintained, while the trunks in Fig. 2-(e)(f)

completely lost their textures and became blurry, which was

probably caused by the over-aggressive temporal averaging

and the inaccurate ME process.

4. CONCLUSION

In this paper, we proposed an efficient video denoising al-

gorithm using the HEVC motion estimation based temporal-

spatial averaging, quantization and filters to improve the qual-

ity of denoising while achieving a high processing speed. Ex-

periments implementing the proposed algorithm in the open-

source HEVC encoder x265 show that the proposed algorithm

produced a denoising quality that is close to high quality but

very slow denoising algorithms such as VBM4D, and supe-

rior to other fast denoising algorithms such as NeatVideo and

the MSU denoiser, while at the same time achieving a speed

that is two magnitudes faster than VBM4D. Given that the

tools used in the denoiser are widely optimized in the HEVC

encoding context, the proposed algorithm could be easily in-

tegrated into real-world video processing systems.
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