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ABSTRACT

Group sparsity has shown great potential in various low-level vision
tasks (e.g, image denoising, deblurring and inpainting). In this pa-
per, we propose a new prior model for image denoising via group
sparsity residual constraint (GSRC). To enhance the performance of
group sparse-based image denoising, the concept of group sparsity
residual is proposed, and thus, the problem of image denoising is
translated into one that reduces the group sparsity residual. To re-
duce the residual, we first obtain some good estimation of the group
sparse coefficients of the original image by the first-pass estimation
of noisy image, and then centralize the group sparse coefficients of
noisy image to the estimation. Experimental results have demon-
strated that the proposed method not only outperforms many state-
of-the-art denoising methods such as BM3D and WNNM, but results
in a faster speed.

Index Terms— Image denoising, group sparsity residual con-
straint, group-based denoising, BM3D, WNNM.

1. INTRODUCTION

As a classical problem in low level vision, image denoising has been
widely studied over the last half century due to its practical signif-
icance. Image denoising aims to estimate the clean image X from
its noisy observation Y = X + V, where V is usually assumed to be
additive white Gaussian noise. In the past decades, extensive studies
have been conducted on developing various methods for image de-
noising. Due to the ill-posed nature of image denoising, and thus, it
has been widely recognized that the prior knowledge of images plays
a key role in enhancing the performance of image denoising method-
s. A variety of image prior models have been developed, including
wavelet/curvelet based [1, 2], total variation based [3, 4], sparse rep-
resentation based [5, 6, 7] and nonlocal self-similarity based ones
[8, 9], etc.

Motivated by the fact that wavelet transform coefficients are ac-
tually regarded as Laplacian distribution, many wavelet shrinkage
based methods have been proposed [1, 2]. For instance, Chang et al.
[1] proposed a method called Bayes shrink algorithm to model the
wavelet transform coefficients as generalized Gaussian distribution.
Remenyi et al. [2] proposed to use 2D scale mixing complex-valued
wavelet transform and achieved promising denoising performance.
It has been acknowledged that natural image gradients have a heavy-
tailed distribution. The image gradient is modeled as Laplacian dis-
tribution in the total variation based methods for image denoising
[3].
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Instead of modeling image statistics in some transform domain
(e.g., gradient domain, wavelet domain, etc.), sparse representation
based prior assumes that each patch of an image can be precisely
represented by a sparse coefficient vector whose entries are mostly
zero or close to zero based on a basis set known as a dictionary. The
dictionary is usually learned from a natural image dataset [5]. Com-
pared with the conventional analytically designed dictionaries, such
as those based on wavelet, curvelet and DCT, dictionaries learned
directly from images have an advantage of being better adapted to
local image structures [5] and thus, could improve the sparsity which
leads to the better denoising performance. Nonetheless, patch-based
sparse representation model of natural images usually suffers from
some limits, such as dictionary learning with great computational
complexity, ignore the relationship between similar patches.

Motivated by the fact that the image patches that have similar
patterns can be spatially far from each other and thus can be gathered
in the whole image. The so-called nonlocal self-similarity (NSS) pri-
or is among the most remarkable priors for image restoration. The
seminal work of nonlocal mean (NLM) [8], which initially utilizes
the NSS property to implement a form of the weighted filtering for
image denoising. After this, inspired by the success of the NLM de-
noising filter, a flurry of nonlocal regularization methods[6, 10, 11]
were proposed to solve various image inverse problems. By contrast
with the local regularization based methods, nonlocal regularization
based methods can effectively generate sharper image edges and p-
reserve more image details. However, there are still lots of image
details and structures that cannot be accurately recovered. One im-
portant reason is that the above nonlocal regularization terms rely
on the weighted graph [12], yet it is unavoidable that the weighted
manner leads to disturbance and inaccuracy [13].

Based on the NSS property of an image, recent studies [9, 14,
15, 16] have revealed that structured or group sparsity can provide
more powerful reconstruction performance for noise removal. For
instance, Dabov et al. [14] proposed BM3D method to exploit non-
local similar patches and 3D transform domain collaborative filter-
ing, which can achieve state-of-the-art performance in denoising.
Marial et al. [9] further advanced the idea of NSS by group sparse
coding. As the matrix formed by nonlocal similar patches in a nat-
ural image is of a low rank, the low-rank modeling based methods
[15, 16] have also achieved highly competitive denoising results.

Though group sparsity has verified its great success in image
denoising, a majority of existing methods only the NSS property of
noisy input image is used for noise removal. For example, BM3D
[14] extracted the nonlocal similar patches from a noisy image and
conducted collaborative filtering in the sparse 3D transform domain.
In WNNM [16], the low-rank regularization is enforced to recon-
struct the latent structure of the matrix of noisy patches. However,
only considering the NSS property of noisy input images, it is very
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challenging to recover the latent clean image X from noisy observa-
tion Y, especially in the case of strong noise corruption.

With the above question kept in mind, in this work, we propose
a new prior model for image denoising by group sparse residual con-
straint (GSRC). To improve the performance of group sparse-based
image denoising, the concept of group sparsity residual is proposed,
and thus, the problem of image denoising is turned into one that re-
duces the group sparsity residual. To reduce the residual, we first
obtain some good estimation of the group sparse coefficients of the
original image by the first-pass estimation of noisy image, and then
centralize the group sparse coefficients of noisy image to the esti-
mation. Experimental results have demonstrated that the proposed
method not only outperforms many state-of-the-art denoising meth-
ods such as BM3D and WNNM, but results in a faster speed.

2. MODELING OF GROUP SPARSE RESIDUAL
CONSTRAINT

2.1. Group-based sparse representation

Recent studies [9, 14, 15, 16, 17] have revealed that structured or
group sparsity can offer more powerful reconstruction performance
for image denoising. More specifically, image X with size N is divid-
ed into n overlapped patches xi of size

√
bc × √

bc, i = 1, 2, ..., n.
Then, for each xi, its most similar k patches are selected from a L×L
sized searching window to form a set Si. After this, all the patches in
Si are stacked into a matrix Xi ∈ �bc×k, which contains every ele-
ment of Si as its column, i.e., Xi = {xi,1, xi,2, ..., xi,k}. The matrix
Xi consisting of all the patches with similar structures is called as a
group, where xi,k denotes the k-th similar patch (column form) of
the i-th group. Finally, similar to patch-based sparse representation
[5], give a dictionary Di, which is often learned from each group.
Thus, each group Xi can be sparsely represented as Xi = DiBi and
solved by the following �p-norm minimization problem,

Bi = argminBi{||Xi − DiBi||2F + λ||Bi||p} (1)

where λ is the regularization parameter, and p is 0 or 1, characteriz-
ing the sparsity of Bi. Then the whole image X can be represented
by the set of group sparse codes Bi.

Thus, in image denoising, the goal is to exploit group sparse-
based model to recover Xi from Yi, and to solve the following min-
imization problem,

Ai = argminAi{||Yi − DiAi||2F + λ||Ai||p} (2)

Once all group sparse codes Ai are achieved, the latent clean
image X can be reconstructed as X̂ = DA.

Although group sparsity has demonstrated its effectiveness in
image denoising, most of the existing methods use only the NSS
property of noisy input images for noise removal (e.g., (2)), mak-
ing it challenging to recover the latent clean image X from its noisy
observation Y, especially in the case of strong noise corruption.

2.2. Group sparsity residual

Let us revisit (1) and (2), due to the influence of noise, it is very
difficult to estimate the true group sparse code B from noisy image
Y. In other words, the group sparse code A obtained by solving
(2) are expected to be close enough to the true group sparse code
B of the original image X. As a consequence, the quality of image
denoising largely depends on the level of the group sparsity residual,

which is defined as the difference between group sparse code A and
true group sparse code B,

R = A − B (3)

Therefore, to reduce the group sparsity residual R and enhance
the accuracy of A, we propose a new prior model to image denoising
by group sparse residual constraint (GSRC), we can rewrite (2) into

Ai = argminAi{||Yi − DiAi||2F + λ||Ai − Bi||p} (4)

In practice, image X is not available. Therefore, we cannot ob-
tain the true group sparse code B. Nonetheless, we can compute
some good estimation of B. In general, there are various methods
to estimate the true group sparse code B, which depend on the prior
knowledge of B we have. For example, if we have many example
images are similar to the original image X, then a good estimation
of B could be learned from the example image set. However, the ex-
ample image set is simply not available under many real situations.

The strategy of first-pass estimation is a popular means to im-
age denoising. The basic idea is as follows. Firstly, the original
noise image was initially operated by using some denoising algo-
rithms (e.g., BM3D [14], NLM [8], EPLL [18], etc.). Secondly, the
result of first-pass estimation would continue to be denoised by the
proposed method. In past two years, a variety of image denoising
methods based on first-pass estimation have been developed, such
as GID method [19], SOS method [20], TID method [21], MSEPLL
method [22], etc.

Based on the above analysis, we first apply BM3D [14] on noisy
image Y, and then the initialization result of BM3D is defined as Z.
Since the BM3D has an ideal denoising performance, Z could be re-
garded as a good approximation of the original image X. Therefore,
in this paper we can achieve the good estimation of B from Z.

Note that in this paper the noise image Y is only operated by
BM3D, because BM3D result is regarded as a good approximation
of the original image X, without continuing denoising operator to
BM3D result.

3. ALGORITHM OF GSRC

In (4), except for estimating B, we also need to determine the value
of p. Here we perform some experiments to investigate the statistical
property of R, where R represents the set of Ri = Ai − Bi. In these
experiments, an image Leave is used as an example in the case of
image denoising, where the original image X is added by Gaussian
white noise with standard deviation σ= 30. We plot the histogram
of R as well as the fitting Gaussian, Laplacian and hyper-Laplacian
distribution of R in Fig. 1(a). To better observe the fitting of the tails,
we also plot these distributions in the log domain in Fig. 1(b). It can
be seen that the histogram of R can be well characterized by the
Laplacian distribution. Thus, the �1-norm is adopted to regularize
Ri, and (4) can be rewritten as

Ai = argminAi{||Yi − DiAi||2F + λ||Ai − Bi||1}
= argminα̃i{||ỹi − D̃iα̃i||22 + λ||α̃i − β̃i||1}

(5)

where ỹi, α̃i, and β̃i denote the vectorization of the matrix Yi,Ai

and Bi, respectively. Each column d̃h of the matrix D̃i = [d̃1, d̃2, ..., d̃J ]
denotes the vectorization of the rank-one matrix.

For fixed β̃i, λ, (5) is convex and can be solved efficiently. We
adopt the surrogate algorithm in [23] to solve (5). In the t + 1-
iteration, the proposed shrinkage operator can be calculated as

α̃t+1
i = Sλ(D̃

−1
i

ˆ̃xi
t − β̃

t

i) + β̃
t

i (6)
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Fig. 1. The distribution of R for image Leave with σ=30 and fitting
Gaussian, Laplacian and hyper-Laplacian distribution in (a) linear
and (b) log domain, respectively.

where Sλ(·) is the soft-thresholding operator, ˆ̃xi represents the vec-

torization of the i-th reconstructed group X̂i. The above shrinkage
operator follows the standard surrogate algorithm, from which more
details can be seen in [23].

The parameter λ that balances the fidelity term and the regu-
larization term should be adaptively determined for better denois-
ing performance. Inspired by [1], the regularization parameter λi of
each group Yi is set as λi = c ∗ 2√2σn

2/σi, where σi denotes the
estimated variance of Ri, and c is a small constant.

With the solution Ai in (6), the clean group Xi can be recon-
structed as X̂i = DiAi. Then the clean image X̂ can be reconstruct-
ed by aggregating all the group Xi. In practical, we could perform
the above denoising procedures for better results by several itera-
tions. In the t+1-th iteration, the iterative regularization strategy
[24] is used to update the estimation of noise variance. Then the
standard divation of noise in t+1-th iteration is adjusted as (σt+1) =

γ∗
√

(σ2 − ||Y − X̂
t+1||22), where γ is a constant. kNN method has

been widely used to similar patch selection. In order to obtain an ef-
fective similar patches index by kNN, we empirically define SSIM (

X̂
t+1

, Z)-SSIM (X̂
t
, Z)< τ , then X̂

t+1
is regarded as target image to

fetch the k similar patches index, where SSIM represents structural
similarity, and τ is a small constant. The complete description of the
proposed method for image denoising via GSRC model is exhibited
in Algorithm 1.

Fig. 2. All test images.

4. EXPERIMENTAL RESULTS

In this section, we validate the performance of the proposed method
and compare it with recently proposed state-of-the-art denoising
methods, including BM3D [14], NCSR [6], WNNM [16], AST-NLS
[25], and MSEPLL [22]. The parameter setting of GSRC is as fol-
lows: the searching window L × L for similar patches is set to be
30 × 30 and τ is 0.0001. The size of each patch is set to be 6 × 6,

Image denoising via GSRC

Input: Noisy image Y.

Initialization: X̂ = Y,Z, c, k, bc, L, σ, τ, γ, δ;
For t = 1, 2, ..., iter do

Iterative regularization Yt+1 = Xt + δ(Y − Xt);
If SSIM(Yt+1,Z)− SSIM(Yt,Z) < τ

Similar patch index based on Yt+1.
Else

Similar patch index based on Z.
End if
For each patch yi and zi do

Find a group Yi
t+1 via kNN.

Find a group Zi
t+1 via kNN.

Constructing dictionary Di
t+1 by Yi using PCA operator.

Update Bi
t+1 computing by Bi = Di

−1Zi.

Update λi
t+1 computing by λi = c ∗ 2√2σn

2/σi.

Update Ai
t+1 computing by (6).

Get the estimation Xi
t+1 =Di

t+1Ai
t+1.

End for
Aggregate Xi

t+1 to form the recovered image X̂
t+1

.
End for
Output: X̂

t+1
.

7 × 7, 8 × 8 and 9 × 9 for σ ≤ 20, 20 < σ ≤ 50, 50 < σ ≤ 75
and 75 < σ ≤ 100, respectively. (c, γ, δ) are set to (0.2, 0.18, 0.67)
when σ ≤ 30 or (0.3, 0.22, 0.67) otherwise. The source code of the
proposed can be downloaded at: http://www.ee.oulu.fi/

˜xliu/research/gsrc/gsrc.html.

We first evaluate the competing methods on 12 test images,
whose scenes are shown in Fig. 2. Gaussian white noise with
standard deviation σ = 30, 40, 50, 100 is added to those test im-
ages. The PSNR results by the competing denoising methods are
shown in Table 1. It can be seen that the proposed GSRC performed
competitively compared to other methods. It achieves 0.39-0.56dB,
0.46-0.76dB, 0.08-0.14dB, 0.3-0.41dB and 0.61-0.66dB improve-
ment on average are the BM3D, NCSR, WNNM, AST-NLS and
MSEPLL, respectively. The proposed GSRC can obtain better de-
noising results in the case of strong noise corruption. For example,
in the case of σ = 100, the PSNR gains of the GSRC over the
benchmark BM3D method can be as much 1.24dB ad 1.37dB on
foreman and House, respectively. The visual comparison of compet-
ing denoising methods at noise level 40 and 100 are shown in Fig.
3 and Fig. 4, respectively. It can be found out that BM3D, NCSR,
WNNM, AST-NLS and MSEPLL still generated some undesirable
artifacts and some details are lost. By contrast, the proposed GSRC
is able to preserve the sharp edges and suppress undesirable ar-
tifacts more effectively than the other competing methods. Such
experimental findings clearly demonstrate that the GSRC model is a
stronger prior for the class of photographic images containing large
variations in edges/textures.

Efficiency is another key factor in evaluating an algorithm. We
then compare the speed of all competing methods. All experiments
are conducted under the Matlab 2012b environment on a machine
with Intel (R) Core (TM) i3-4150 with 3.56Hz CPU and 4GB mem-
ory. The run time of the competing methods on the test images is
shown in Table 2. It can be seen that the proposed GSRC used less
computation time than all the other methods except BM3D. It may
be because that BM3D was implemented with C++ mex-function
and parallelization, while GSRC implemented purely in Matlab.
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Table 1. Denoising PSNR (dB) results by different denoising methods
σ = 30 σ = 40

Images BM3D NCSR WNNM AST-NLS MSEPLL GSRC BM3D NCSR WNNM AST-NLS MSEPLL GSRC
Barbara 29.18 28.90 29.56 29.30 27.72 29.65 27.33 27.36 27.84 27.51 26.04 28.00
C.Man 28.68 28.59 28.81 28.72 28.37 28.79 27.20 27.12 27.58 27.41 27.08 27.63
Couple 30.58 30.22 30.56 30.30 30.42 30.67 29.13 28.89 29.24 28.89 29.15 29.38
foreman 32.69 32.78 33.25 32.87 32.34 33.37 31.11 31.59 31.81 31.27 31.05 32.05

girl 30.71 30.57 30.72 30.58 30.79 30.79 29.64 29.65 29.68 29.38 29.80 29.79
Hill 28.44 28.25 28.58 28.37 28.41 28.63 27.21 27.02 27.25 27.08 27.18 27.31

House 32.08 32.08 32.58 32.49 31.71 32.66 30.67 30.82 31.35 31.16 30.47 31.64
Leave 27.82 28.17 28.65 28.46 27.26 28.79 25.69 26.24 27.00 26.86 25.72 26.96
Lena 29.55 29.43 29.83 29.52 29.46 29.87 27.77 28.01 28.38 28.12 28.05 28.41
lin 31.07 30.84 30.96 30.84 30.96 31.21 29.53 29.45 29.80 29.44 29.68 29.98

Monarch 28.39 28.47 29.02 28.73 28.49 29.03 26.74 26.86 27.54 27.30 27.06 27.59
Parrot 30.33 30.38 30.66 30.52 30.29 30.79 28.59 28.96 29.38 29.03 28.94 29.58

Average 29.96 29.89 30.27 30.06 29.68 30.35 28.38 28.50 28.91 28.62 28.35 29.03

σ = 50 σ = 100

Images BM3D NCSR WNNM AST-NLS MSEPLL GSRC BM3D NCSR WNNM AST-NLS MSEPLL GSRC
Barbara 26.45 26.25 26.69 26.41 25.06 26.79 23.05 22.84 23.44 23.11 22.11 23.47
C.Man 26.22 26.17 26.45 26.34 26.12 26.71 23.09 22.94 23.40 23.34 23.01 23.60
Couple 28.18 27.80 28.18 27.90 28.23 28.31 25.32 24.79 25.30 24.89 25.27 25.35
foreman 30.24 30.56 31.25 30.60 30.04 31.12 26.31 26.55 27.40 27.06 26.84 27.55

girl 28.91 28.83 28.94 28.69 29.07 29.01 26.17 26.30 26.43 26.17 26.89 26.69
Hill 26.27 26.06 26.45 26.22 26.28 26.40 23.63 23.41 23.76 23.28 23.74 23.91

House 29.75 29.69 30.40 30.22 29.47 30.64 25.87 25.57 26.72 26.92 25.99 27.24
Leave 24.75 24.97 25.49 25.51 24.42 25.75 20.94 20.90 21.58 21.45 20.31 21.55
Lena 27.03 27.02 27.16 27.08 26.97 27.28 24.01 23.70 24.42 24.10 23.91 24.43
lin 28.75 28.40 28.90 28.52 28.69 28.90 25.66 25.22 25.90 25.67 25.63 25.89

Monarch 25.89 25.78 26.42 26.10 25.93 26.64 22.55 22.14 22.95 22.70 22.44 23.03
Parrot 28.06 27.88 28.30 28.06 27.90 28.51 24.62 24.46 24.94 24.88 24.38 25.23

Average 27.54 27.45 27.89 27.64 27.35 28.01 24.27 24.06 24.69 24.46 24.21 24.83

Table 2. Average run time (seconds) with standard deviation of different methods on test images. BM3D is implemented with complied C++
mex-function and uses parallelization, while the other methods are implemented in Matlab.

σ BM3D NCSR WNNM AST MSEPLL GSRC
30 2.01±0.04 211.76±6.41 207.50±1.44 295.42±2.55 178.07±3.40 67.51±11.05
40 1.91±0.04 467.35±17.99 207.75±1.77 295.14±2.41 178.01±1.56 55.20±7.72
50 4.58±0.06 464.03±15.56 159.63±1.12 494.22±3.87 255.85±2.07 54.70±6.44

100 4.81±0.06 345.08±11.43 256.00±1.50 1118.84±4.79 256.70±2.32 114.64±13.85

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Denoising images of lin by different methods (σ =
40). (a) Original image; (b) Noisy image; (c) BM3D [14] (P-
SNR=29.53dB); (d) NCSR [6] (PSNR=29.45dB); (e) WNNM [16]
(PSNR=29.80dB); (f) AST-NLS [25] (PSNR=29.43dB); (g) MSE-
PLL [22] (PSNR=29.68dB); (h) GSRC (PSNR=29.98dB).

5. CONCLUSION

In this paper, we propose a new prior model for image denoising via
group sparsity residual constraint. To improve the performance of
the group sparse-based image denoising, the concept of group spar-
sity residual is proposed, and thus, the problem of image denoising
is transformed into one that reduces the group sparsity residual. To

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Denoising images of House by different methods (σ =
100). (a) Original image; (b) Noisy image; (c) BM3D [14] (P-
SNR=25.87dB); (d) NCSR [6] (PSNR=25.57dB); (e) WNNM [16]
(PSNR=26.72dB); (f) AST-NLS [25] (PSNR=26.92dB); (g) MSE-
PLL [22] (PSNR=25.99dB); (h) GSRC (PSNR=27.24dB).

this end, we first obtain some good estimation of the group sparse co-
efficients of the original image by the first-pass estimation of noisy
image, and then centralize the group sparse coefficients of noisy im-
age to the estimation. Experimental results have demonstrated that
the proposed method outperforms many state-of-the-art denoising
methods such as BM3D and WNNM in terms of PSNR and time.
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