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ABSTRACT 
 
A novel patch-based multi-view image denoising algorithm 
is proposed. This method leverages the 3D focus image stacks 
structure to exploit self-similarity and image redundancy 
inherent in multiple view images. Then a depth-guided 
adaptive window and dynamic view selection criterion is 
developed to aid proper selection of most consistent patches 
for the multi-view image denoising. Extensive experiments 
have been performed. Comparing the outcomes against those 
of state of the art image denoising algorithms, our proposed 
algorithm demonstrates significant performance advantage. 
 

Index Terms— multi-view, denoising, focus image 
stacks, occlusion handling, non-local means 
 

1. INTRODUCTION 
 
Multi-view image denoising has received growing attention 
due to its wide application in 3D reconstruction, motion 
analysis, and video surveillance, etc. With more images 
participating in denoising, both intra-view and inter-view 
similarities can be exploited, promising a superior denoising 
quality than single-image denoising methods. 

State of art single-image denoising methods such as the 
canonical non-local means (NLM) [2] and block matching 3D 
(BM3D) [3] have demonstrated good denoising quality. 
Based on these results, several multi-view image denoising 
algorithms have been proposed: Zhang et al. [1] proposed a 
depth-guided similarity measure for grouping patches and 
collaboratively denoising the patches using PCA or tensor 
analysis. Similarly, Luo et al. [4] proposed to apply the depth-
guided joint-view distance to multiple view NLM that can 
adaptively select the optimal number of patches in denoising 
process. Meanwhile, Xue et al. [5] presented a graphical 
model of surface patches for patch clustering, and then 
applying Wiener filtering in the transformed domain to 
attenuate the noise. These multi-view image denoising 
methods achieved improved denoising quality at the expense 
of computational expensive exhaustive patch matching 
operations. Recently, Miyata et al. [6] proposed to use plane 
sweeping [9] for image reconstruction to perform effective 
multi-view image denoising with low computation cost. In 
[7], we introduced the 3D focus image stacks to further 

improve denoising quality without significantly increasing 
computational cost. 

In this work, a new image denoising algorithm 
incorporating a novel occlusion handling scheme is proposed. 
This method extends the traditional NLM patch-based 
denoising procedure to multi-view images to exploit image 
redundancy across neighboring views. Moreover, leveraging 
the 3D focus image stacks, we developed novel adaptive 
window and view selection criteria to exclude outlier image 
patches from occluded views. The resulting denoised image 
quality shows significant improvement over all existing 
approaches. 

In section 2, the proposed patch-based multi-view image 
denoising method will be presented. Experiment results 
comparing against existing denoising methods are presented 
in section 3, and we conclude the paper in section 4.  
 

2. MULTI-VIEW IMAGE DENOISING 
ALGORITHM 

 
2.1. Problem Formulation 
 

Given a set of noisy images {Is, t(x, y), s, t  Z2} captured 
using a camera array that consists of identical cameras on a 
plane. Each camera’s position will be inferred by a grid point 
(s, t), and (x, y) is the image pixel coordinate. The optical axis 
of each camera is perpendicular to the camera plane. We 
assume the noisy images is the sum of a noiseless true image 
and additive noise: 

 
, , ,( , ) ( , ) ( , )s t s t s tI x y I x y n x y    (1)

where I's, t is the noiseless true image, and ns,t is i.i.d. zero-
mean Gaussian noise with variance σ2, i.e. ns,t(x, y) ~ N(0, σ2). 
Given the target view (s0, t0), the objective of multi-view 
image denoising is to estimate I's0, t0(x, y), i.e. true target view 
image given the set of noisy multi-view images. 
 
2.2. Focus Image Stacks and Disparity Estimation 
 

In [7], we proposed 3D focus image stacks as a powerful 
multi-view image representation to facilitate fast disparity 
estimation and preliminary multi-view image denoising. 

Given a set of multi-view images Is, t (x, y) with target 
view located at (s0, t0), the images from other cameras can be 
aligned against the target view with respect to a fixed 
disparity value d by translational shifting the amount d: 
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For each disparity value d, the translated images Id
s, t(x, y) are 

stacked into a 3D image stack Fd(x, y), which we call the 3D 
focus image stack. One of the important properties of focus 
image stacks is that if d is correct disparity for pixel (x, y), 
then all the pixels at location (x, y) in the focus image stack 
Fd correspond to the same surface point in the 3D scene, and 
thus should have similar intensity values [7]. A patch-wise 
implementation of this property has been proposed [7] where 
a similarity measure Sd is computed for each disparity d: 
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where N is the total number of cameras, Fd(i, j, k) is the kth 
slice in the focus image stack Fd, and W(x, y) is an L×L 
window centered at  (x, y). The disparity value for pixel (x, y) 
is then found as the d that minimizes Sd(x, y). That is, 

  ˆ( , ) arg min ( , )d
d

d x y S x y  (4)

 
2.3. Depth-guided Adaptive Window Selection 
 

With the 3D focus image stacks and disparity map estimated, 
one may estimate intensity value for each pixel by weighted 
averaging each pixel stack in Fd and therefore reduce noise 
variance [7]. While this approach has the advantage of 
relative low computational complexity, it falls short in 
denoising performance however. Firstly, due to depth 
variation, not all cameras in the camera array can observe a 
particular point on the surface of an object. The view of some 
camera may be occluded by other part of the object surface. 
The pixel values of such occluded views should be excluded 
from estimation. Secondly, earlier efforts [6, 7] considered 
only individual pixels, without taking into account 
neighboring pixel values, failing to leverage the spatial 
correlation to improve denoising performance.  

Occlusion handling has been addressed in multi-view 
stereo research, but rarely mentioned in denoising literature. 
Occlusion occurs often along object boundaries where drastic 
depth variation is more likely. Inspired by the occlusion 
handling techniques in multi-view stereo by Kang et al. [8], 
we propose a depth-guided adaptive window selection and 
dynamic views selection scheme that is able to automatically 
select the similar patches from neighboring views while 
discarding occluded patches. Fig. 1 illustrates its fundamental 
idea using a simple three-view image system, with the middle 
view being the target view. Region A, B, C denote the 
occluding foreground, the partially occluded region, and the 
background, respectively. The white pixel 1 is a pixel located 
in region A near the boundary of A and B, while the black 
pixel 2 is another pixel in region B and is partially occluded 
by region A in the right view. As the top row of Fig. 1 
illustrates, if the window centered at these pixels (the solid-
line windows) is selected, regular patch matching and 
denoising algorithms tend to make mistakes due to the 
dissimilarities between these patches. By selecting the 
window shifting to the top-left corner, as shown in the 

dashed-line windows, both pixels now have their patches 
correctly matched, and further denoising procedures can be 
properly applied on these patches. Note that pixel 2 might still 
be occluded in the right view, which will be handled with 
appropriate views selection to be discussed later. 

In real implementation, as the images are contaminated 
with noise, the patch similarity may not be accurately 
computed, which could further bias the selection of window. 
As shown in the bottom row of Fig. 1, for pixel 2, the top-
right window (dotted-line window), instead of the top-left 
window, is used for computing similarities. Assume all three 
views are used, then the patch similarities actually might be 
comparable with using the top-left window or even better, 
due to the corruption of noise. Since the top-right window 
covers a large amount of region A in the middle and right 
view, traditional denoising algorithms such as [2, 4, 6, 7] tend 
to put higher weight on the right patch when estimating the 
target pixel value, leading to a biased estimation.  

To deal with this problem, we propose to use depth 
(disparity) as a guide to assist window selection. In specific, 
among all the candidate windows, the average disparity value 
within each window of the target view is first computed and 
compared with the target pixel disparity. Windows with 
closer disparity values are picked for the second round of 
selection. Next, the entire patch volume is selected from the 
focus image stack using the picked candidate windows, and 
root mean squared error (RMSE) between each patch and the 
target patch (from center view) is computed. To avoid error 
caused by significantly biased outliers, we choose to use the 
median value of RMSE instead the mean as a measure for 
patch similarity, and the window with lowest median value is 
the one to be selected. Fig. 2 shows an example of our depth-
guided adaptive window selection. Five candidate windows 
are implemented for window selection. Without depth 
information as a guide, the top-right window which has the 
lowest RMSE median value would have been selected, 
causing a biased estimation of the target pixel. The patch 
average disparity value helps eliminate the top-right and 
bottom-right window first, and select the window with lowest 
RMSE median among the remaining windows, which all 
have an average disparity of 5. 

 
 

 
Fig. 1. Illustration of adaptive windows. The top row shows the 

conventional centered window, and the more reasonable 
top-left window. The bottom row shows the incorrect 
top-right window for pixel 2. 
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2.4. Dynamic Views Selection 
 

With a reasonable window selected, one can extract the whole 
patch volume from the focus image stack for each pixel 
location. Previous denoising strategies simply uses the entire 
volume as an input for the denoising procedure, which could 
lead to inferior denoising performance due to patch 
dissimilarities. As shown in Fig. 2, although the top-left 
window is selected, part of the views remain inconsistent with 
the target patch. The dynamic view selection scheme is thus 
proposed to help select appropriate views such that further 
denoising algorithms can be performed without involving 
inconsistent patches. 

Normally, a semi-occluded region in the target view will 
only be occluded in either the preceding or the succeeding 
views in the focus image stacks. As shown in Fig. 1, with the 
top-left window used for pixel 2, the patch is only occluded 
in the right view, while still being visible in the center and 
left views. The same phenomenon can also be observed in 
Fig. 2, where for the top-left window in (c), the 5th, 10th, 15th, 
20th, and 25th views (columns) are obviously contaminated by 
the occluding object (the video recorder) which has lower 
intensity values. 

Kang et al. [8] introduced the idea of view selection for 
multi-view stereo where in their situation they were selecting 
video frames in the temporal dimension, and only 
implementing a general best 50% selection of all images 
available. While 50% is a decent percentage for views 
selection, it lacks flexibility and does not distinguish non-
occluded pixels from occluded ones, which eventually 
downgrades the denoising quality of non-occluded regions as 
only half of the views are participating in denoising. In this 
work, we propose to use a dynamic scheme for views 
selection. An observation of Fig. 2 implies that consistent 
views should have similar intensity values and image 
structures, thus leading to a RMSE with lower values and 
smaller fluctuation. Here we introduce the idea of cumulative 
standard deviation (CSD), which computes the standard 
deviation of the sorted RMSE vector cumulatively. Highly 
inconsistent patches tend to increase the CSD by a significant 
amount, and by taking only the views with CSD below some 
threshold, dynamic views selection is achieved. An example 
of CSD at different locations of the image is shown in Fig. 3, 
in which we can observe the differences between occluded 
and non-occluded regions.  
 
2.5. Patch-based Multi-view Non-local Means 
 

The original single view non-local means [2] estimates the 
target pixel value by weighted averaging pixels within some 
neighborhood, where the weights depend on the similarities 
between the matching patches and target patch. Patch-based 
version of non-local means has also been implemented by 
Buades et al. [10]. We extend the idea of patch-based non-
local means to multiple views by searching similar patches 
not only in 2D neighborhood, but also across all views. 
Specifically, we extract patch volumes in the neighborhood 
of the target patch from the 3D focus image stacks, and apply 
adaptive window and views selection introduced in section 
2.3 and 2.4 to filter out inconsistent patches from each patch 
volume. The Euclidean distance between the target patch and 
each patch volume is then computed. With average patch 
disparities already computed in previous steps, we are 
selecting patch volumes with closer average patch disparities 
and smaller Euclidean distances such that a similar patch is 
both from a similar depth and is of close Euclidean distance 
to the target patch.  

 
 

  
Fig. 3. Cumulative standard deviation (CSD) of pixel 1 

(occluded) and pixel 2 (non-occluded). The threshold of 
CSD for views selection is set to 5. Pixel 1 has 12 views 
selected for denoising, while pixel 2 has all 25 views 
selected, including the target view. 

 

 
 

(a) Noisy image (b) Centered window 

  

(c) Top-left window (d) Top-right window 

  

(e) Bottom-left window (f) Bottom-right window 

Fig. 2. Depth-guided adaptive window selection. (a) shows the 
noisy image with target pixel indicated by red dot. (b)-(f) 
show the patch volume in vector form for each candidate 
window and the RMSE plot. The target view is assumed 
to be the center view, i.e. the middle column. 

 

Pixel 
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With all similar patches in the 3D neighborhood found, 
we are able to denoise the target patch by weight averaging 
these patches, where the weight depends on the patch 
similarities, just as the conventional NLM. A final 
aggregation step is then taken to form the denoised image 
from denoised patches. Each pixel is covered by multiple 
denoised patches, and to determine the value of the pixel in 
the denoised image, we can take an average of all denoised 
patches that covers this pixel. This aggregation step makes 
the algorithm more robust to noise than pixel-wise estimation. 
 

3. EXPERIMENT RESULTS 
 
We implemented our method in MATLAB® R2014a on a 
machine with Intel® Core™ i7-4700MQ CPU (2.40GHz). 
Totally six multi-view image sets from Middlebury Stereo 
Dataset [11] and Stanford Light Field Archive [12] were 
evaluated. Without loss of generality, we use 5×5 views and 
set the center view to be the target view. The patch size is set 
to be 5×5 pixels and a maximum number of 10 similar 
neighboring patch volumes are selected from a searching area 
of size 21×21 pixels. For all the image sets, white Gaussian 
noise of zero mean and variance σ2 (σ = 20) were added. Peak 
signal-to-noise ratio (PSNR) is used as a measuring criteria 
for denoising quality. 

We compared our algorithm with the classical single 
view denoising methods like non-local means (NLM) [2] and 
block-matching 3D (BM3D) [3], as well as some of the prior 
multi-view denoising methods including Miyata’s fast multi-
view image denoising [6] and our previous work [7].  The 
denoising results are shown in Table 1, and part of snapshots 
of the images are displayed in Fig. 4. In general, our methods 
substantially outperforms the previous methods by a big 
margin, both visually and quantitatively. This dramatic 
improvement in denoising quality is attributed to the 
increased number of patches participating in denoising across 

multiple views, as well as the exclusion of inconsistent 
patches achieved by the occlusion handling process. 
 

4. CONCLUSION 
 
We have proposed a new multi-view image denoising 
algorithm that extends the single-image non-local means to 
multiple views and is able to handle occlusion elegantly. 
Quantitative and qualitative experiments with different sets 
of multi-view images have shown that the proposed method 
outperforms most of the existing state-of-art algorithms by a 
great margin, and further proved that the performance 
limitation of image denoising can be extended by using 
multiple views. Our future tasks include incorporating the 
occlusion handling into disparity estimation to further 
enhance the denoising quality, and improving the 
computational time of the algorithm. 
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Dataset NLM BM3D 
Miyata 

et al. [6] 

Our 
Previous 
Work [7] 

Proposed 

Ohta 29.13 31.41 28.29 31.20 32.43 

Chess 29.29 30.65 28.45 30.74 31.87 

Flower 30.20 30.81 29.73 31.01 32.01 

Knight 27.69 30.20 28.31 30.81 32.35 

Tarot 25.03 26.38 25.20 27.05 29.73 

Truck 30.53 32.37 30.57 32.89 33.88 

 
Table 1. Denoising quality (PSNR in dB) comparison 

       

       

       
 

Fig. 4. Comparison of different denoising algorithms. From top to bottom: Ohta, Chess, and Flower image sets; From left to right: noisy 
image, NLM [2], BM3D [3], Mitaya et al. [6], our previous work [7], proposed method, and ground truth. 
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