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ABSTRACT
Person re-identification is an important topic in visual surveil-
lance, which aims at recognizing an individual over disjoint
camera views. As a major aspect of person re-identification,
distance metric learning has been widely studied to seek a
discriminative matching metric. However, most existing dis-
tance metric learning methods learn an identical projection
matrix for all camera views, while ignoring the own char-
acteristic of each view. To address this issue, we propose a
novel method to learn projections from corresponding views
(LPCV) for person re-identification. First, we use the labeled
features to learn different projections for different views.
Then, these projections are used to transform tested features
into a new feature space. Finally, we use this new feature
space to identify a person from one camera to another with
a standard nearest-neighbor voting method. Experimental
results on three challenging datasets VIPeR, PRID 450S and
CUHK01 demonstrate that our method significantly performs
favorably against the state-of-the-art methods, especially on
the rank-1 matching rate.

Index Terms— Person Re-identification, Distance Metric
Learning, Projection Matrix

1. INTRODUCTION

Person re-identification is a task of matching persons ob-
served from non-overlapping camera views. It has many
important applications in video surveillance [1] including
threat detection, human retrieval, human tracking and ac-
tivity analysis. As a hot topic, person re-identification has
gained much attention among researchers in recent years
and many methods [2] have been proposed to advance this
field. However, it still remains a challenging problem since
a person observed under different camera views often under-
goes significant variations on viewpoints, poses, appearances
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and illuminations, which make intra-personal variations even
larger than inter-personal variations.

The existing person re-identification methods mainly fo-
cus on either developing discriminative feature representa-
tions [3–6] or learning a distance metric [7–11]. In this pa-
per, we mainly focus on distance metric learning. Given any
feature representation and a set of training data consisting of
matching image pairs across camera views, the objective is
to learn a projection matrix that maximizes the inter-person
divergence and minimizes the intra-person divergence.

However, traditional distance metric learning methods [7–
11] learn an identical projection matrix for all camera views,
while ignoring the nature that images under different camera
views have different characteristics, e.g. individuals under the
same camera views have more similar illumination and view-
point than those under different camera views. Since there
are a lot of differences between different camera views, it is
reasonable to assume that learning a unique projection matrix
for all views would be difficult to address this issue. There-
fore, these methods do not make full use of the characteristic
of each view and would probably lose some discriminative
information. This issue thus limits the application of the ex-
isting methods and may result in a performance degradation.

In this paper, we propose a distance metric learning
method, which learns projections from corresponding views.
Specifically, we first learn different projection matrices for
different camera views. Then, each image under different
views is projected into a new feature space. Finally, we im-
plement this method with a standard re-identification pipeline
and show the improvements to the re-identification perfor-
mance by thorough experiments on VIPeR, PRID 450S and
CUHK01 datasets.

Relation to prior work: Mignon et al. [7] proposed
PCCA to learn a projection with sparse pairwise similari-
ty/dissimilarity constraints. Kostinger et al. [8] proposed
KISSME to derive a Mahalanobis metric by computing the
difference between the intra-class and inter-class covariance
matrix. Zheng et al. [10] proposed PRDC that maximizes
the probability of a pair of correctly matched images to have
a smaller distance than that of an incorrectly matched pair.
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Fig. 1: Flowchart of the proposed method. After feature
extraction, features extracted from different camera views are
projected into a new feature space, the same person from dif-
ferent camera views are more likely to match.

Although having achieved inspiring re-identification results,
these methods did not give sufficient consideration to the
individual of each camera view when learning an identical
projection matrix for all views, which may not be optimal
when applying to person re-identification. This observation
motivates us to explore a new way to make full use of the
characteristics of different camera views.

2. ALGORITHM DESCRIPTION

In this section, we elaborate on how we perform our method
to learn different projections for different camera views. The
flowchart of our method is given in Fig.1. Existing methods
learn an identical projection matrix for all camera views [7–
11], i.e., most of them are based on the following distance
function to measure the distance between the two cross-view
samples x and z.

D2
M(x, z) = (x− z)TM(x− z) = ||LTx− LT z||22 (1)

where M is a positive semidefinite matrix and can be factor-
ized into M = LLT , where L is the projection matrix for
all of the cross-view samples. This method doesn’t make full
use of characteristics of different camera views and thus may
lose some discriminative information. To solve this problem,
the learning projections from corresponding views (LPCV)
method is introduced. For cross-view samples x (from view
A) and z (from view B), after projection learning, we learn
two different projection matrices LA and LB . The details of
our method are given below.

2.1. Learning Projections From Corresponding Views
Suppose we have a cross-view training set {X,Z}, where
X = (x1,x2, ...,xm) ∈ Rd×m contains m samples in a d-
dimensional space from one view and Z = (z1, z2, ..., zn) ∈
Rd×n contains n samples in the same d-dimensional space
but from the other view. Here LA,LB ∈ Rd×t are the pro-
jection matrices of different camera viewsA andB. Note that

Z is the same as X in the single-view matching scenario. The
goal is to learn a distance function

D2
A,B(x, z) = ||LT

Ax− LT
Bz||22 (2)

where x and z are the features of each image under camera
view A and B. To get a closed-form solution, we use loss
function as follows rather than the log-logistic loss function
in [10, 12]

F (LA,LB) =

m∑
i=1

m∑
j=1

wi,j
A,AD

2
A,A(xi,xj)+

n∑
i=1

n∑
j=1

wi,j
B,BD

2
B,B(zi, zj) +

m∑
i=1

n∑
j=1

wi,j
A,BD

2
A,B(xi, zj) (3)

where wi,j
A,B is the weight parameter between the i-th image

of view A and j-th image of view B. We call (xi, zj) a posi-
tive sample pair if they are from the same class, and a negative
pair otherwise. We define wi,j

A,B as:

wi,j
A,B =


1 if (xi, zj) ∈ Npos

λ

∑
i,j∈Npos

dist(xi,zj)∑
i,j∈Nneg

dist(xi,zj)
otherwise

(4)

where
∑

i,j∈Npos

(·),
∑

i,j∈Nneg

(·) denotes the total Euclidean dis-

tance of all positive and negative sample pairs, dist(xi, zj) is
the Euclidean distance between xi and zj . λ is a negative val-
ue which not only controls the weight of inter-person distance
but also contributes to the loss. This asymmetric weighting is
important because positive and negative pairs are heavily un-
balanced. The Eq.(3) has three parts in total, the first part rep-
resents the total distance under the view A. In a similar way,
the second part represents the total distance under the view B
and the third part represents the total distance between cross-
view A and B. In this way, minimizing the loss Function F
will reduce the intra-class distance and meanwhile enlarge the
inter-class distance.

In order to avoid singularity of the covariance matrix, we
add some constraints to the loss function. As a result, the
problem is formulated as:

min F (LA,LB)

s.t. LT
A(XXT + γI1)LA = I

LT
B(ZZ

T + γI1)LB = I

(5)

where I1 and I denote the corresponding identity matrix, I1 is
the added constraint to avoid singularity and γ is the weight
parameter. These constraints ensure the projected features of
each view have unit amplitude and thus they are not shrunken
to zero.

2.2. A Closed-Form Solution

Since each part is quite similar, we do not present the solution
to all parts in detail. Take the first part as an example:
m∑
i=1

m∑
j=1

wi,j
A,AD

2
A,A(xi,xj) = tr

(
2LT

AX(W1−W2)X
TLA

)
(6)
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Here X=(x1,x2, · · ·xm), W1 is a diagonal matrix whose i-th

row and i-th column diagonal entries are defined as
m∑
j=1

wi,j
A,A,

W2 is a m ×m matrix whose i-th row and j-th column ele-
ment is wi,j

A,A. In a similar way,

n∑
i=1

n∑
j=1

wi,j
B,BD

2
B,B(zi, zj) = tr

(
2LT

BZ(W3−W4)Z
TLB

)
(7)

m∑
i=1

n∑
j=1

wi,j
A,BD

2
A,B(xi, zj) = tr

(
LT
AXW5X

TLA+

LT
BZW6Z

TLB − LT
AXW7Z

TLB − LT
BZW8X

TLA

)
(8)

where Wi(i=1,2,· · · 8) only corresponds to w. The optimiza-
tion problem of Eq.(3) can be written as below:

tr

((
LT
A LT

B

)(W11 W12

W21 W22

)(
LA

LB

))
(9)

where W11 = X(2W1 − 2W2 + W5)X
T , W12 =

X(−W7)Z
T ,W21 = Z(−W8)X

T , W22 = Z(2W3 −
2W4 + W6)Z

T , so the optimization problem can be modi-
fied as :

min tr(LTWL)

s.t. LTML = I
(10)

where LT = (LT
A,L

T
B), M is a block diagonal matrix defined

as M=diag(XXT +γI1 , ZZT +γI1) and I is the correspond-
ing identity matrix.

The optimization problem of Eq.(10) can be solved by
computing k eigenvectors corresponding to the smallest
eigenvalues of the following eigen-decomposition problem:

WL = MLD (11)

where L, D are eigenvectors and eigenvalues respectively, k
is the dimension of sample features after dimensionality re-
duction, then L, LA and LB can be calculated and the dis-
tances between any two pictures can be obtained. The com-
plete algorithm is summarized in Algorithm 1.

3. EXPERIMENTS AND DISCUSSIONS
3.1. Feature Representation
We utilize the Local Maximal Occurrence(LOMO) feature
proposed in [13] for feature representation. The LOMO
feature has shown impressive robustness against viewpoint
changes and illumination variations by concatenating the
maximal pattern of joint HSV histogram and SILTP de-
scriptor. Considering that the dimensionality of LOMO is
extremely high, PCA is used for dimensionality reduction.
The dimension of LOMO feature is reduced to n − 1, where
n is the number of training sample pairs for each dataset.

Algorithm 1: The Solution of Proposed Method
Input: Cross-view training set X, Z, weight

parameters λ and γ.
Output: Projection matrices LA and LB

1: λ = −0.1 → Initialization of λ
2: γ = 0.001 → Initialization of γ
3: compute all wi,j

A,B by (4)
4: formulate loss function by (2) and (3)
5: simplified loss function by (6), (7), (8) and (9)
6: compute L, LA,LB by (10) and (11)
7: return LA, LB

3.2. Datasets and Evaluation Protocol
We evaluate the proposed method on three challenging per-
son re-identification datasets, VIPeR [14], PRID 450S [11]
and CUHK01 [5]. All datasets are randomly divided into two
parts, half for training and the remaining for testing. Exper-
imental results are reported in the form of the average Cu-
mulated Matching scores for 10 trials. Empirically we find
that, λ = −0.1, γ = 0.001 as regularizers can be commonly
applied to improve the results for the three datasets.

VIPeR dataset [14] contains 632 pairs of person images,
captured by a pair of cameras in an outdoor environment. Im-
ages in VIPeR contain large variations in backgrounds, il-
luminations and viewpoints. All images are normalized to
128×48 pixels.

PRID 450S dataset [11] includes 450 single-shot pedes-
trian image pairs captured from two disjoint camera views.
It is also a challenging person re-identification dataset due to
the background interference, partial occlusion and viewpoint
changes. In our experiments, all images are normalized to
128×64 pixels.

CUHK01 dataset [5] is captured in a campus environ-
ment with two camera views. It contains 971 individuals and
each of them has two images in every camera view. Taking the
evaluation method in [5], we normalize all images to 160×60
pixels.

3.3. Evaluation of the proposed LPCV

To validate the effectiveness of the proposed LPCV, we com-
pare the matching results of our method with or without
LPCV on VIPeR, PRID 450S and CUHK01. All parameters
are the same besides the number of the learned projection ma-
trices, the results are demonstrated in Fig.2. As illustrated in
the figures, the LPCV significantly boosts the performance on
the three datasets, for pictures under different views undergo
significant variations on viewpoints, poses and illuminations.
Learning an identical projection matrix for all views may
lose some information. It also validates the assumption that
images under different views have different characteristics,
by learning projections from corresponding views, we can
make better use of this discriminative information.
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Fig. 2: Evaluation of the proposed LPCV. Rank-1 matching rate is marked before the name of each method.

Table 1: Comparisons with the state-of-the-arts on VIPeP
(P=316).

Method rank=1 rank=10 rank=20
Ours 44.21 83.89 92.28
LSSCDL [15] 42.66 84.27 91.93
DNS [16] 42.28 82.94 92.06
Semantic [17] 41.60 86.20 95.10
IDLA [18] 34.81 75.63 84.49
PolyMap [19] 36.80 83.70 91.70
MLAPG [20] 40.73 82.34 92.37
XQDA [13] 40.00 80.51 91.08
LADF [9] 30.22 78.92 90.44
LF [6] 24.18 67.12 82.00
KISSME [8] 19.60 62.20 77.00

Table 2: Comparisons with the state-of-the-arts on PRID
450S (P=225).

Method rank=1 rank=10 rank=20
Ours 60.89 88.98 93.33
LSSCDL [15] 58.98 89.24 93.64
Semantic [17] 44.90 77.50 86.70
LOMO+XQDA [13] 59.60 89.60 93.91
SCNCD [21] 26.90 64.20 74.90
LF [6] 24.18 67.12 82.00
KISSME [8] 33.00 71.00 79.00

3.4. Comparison with State-of-the-arts

Several state-of-the-art metric learning methods with the
same feature representation are compared, and the state-
of-the-art published results on the three datasets are also
compared, detailed comparison results at rank 1, 10, 20 are
shown in Table 1, Table 2 and Table 3. The variable P in the
tables represents the number of the probe set. As shown in
these three tables, in the rank 1 matching rate, our method
outperforms all the listed state-of-the-art methods on VIPeR
dataset, PRID 450S dataset and achieves competitive perfor-
mance compared with LSSCDL [15] on CUHK01 dataset.
As we all know, rank 1 is more important than the latter ranks
in person re-identification problem. The achieved results
in rank 1 validate the superiotity of our proposed method.
Meanwhile, we can see that our matching rate in rank 10
and rank 20 are a little inferior to the state-of-the-arts. The

Table 3: Comparisons with the state-of-the-arts on CUHK01
(P=486).

Method rank=1 rank=10 rank=20
Ours 64.79 91.54 95.41
LSSCDL [15] 65.97 92.12 95.64
LOMO+XQDA [13] 63.21 90.04 95.16
DNS [16] 64.98 89.92 94.36
KFLDA [22] 54.63 86.87 92.02
Mid-level Filter [5] 34.30 64.96 74.96
IDLA [18] 47.53 80.25 87.45

reasonable explanation is that the process of the projection
learning may be affected by the loss function.

3.5. Running cost
We conduct the proposed method with Matlab implementa-
tion on a desktop PC with 3.2GHz CPU and 16G RAM, and
report the running time of each stage averaged over 10 ran-
dom trials on the VIPeR dataset. The total running time (in-
cluding training and test) is 37.8 seconds for each trail. There-
fore, it indicates that our model is efficient.

4. CONCLUSIONS

In this paper, we propose a method to learn projections
from corresponding views (LPCV) and apply it to person
re-identification problem. LPCV makes better use of discrim-
inative information of each camera because it learns different
projection matrices for different camera views. Experiments
on three challenging person re-identification datasets VIPeR,
PRID 450S and CUHK01 demonstrate the superiority of
the proposed method over the state-of-the-art methods. In
addition, our method has low time consumption, which is
applicable for the real-world surveillance systems. Future
work focus on exploring a better loss function and applying it
to more real-world applications.
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