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ABSTRACT

Person re-identification remains a challenging problem due to
large variations of poses, occlusions, illumination and camer-
a views. To learn both feature representation and similarity
metric simultaneously, deep metric learning methods using
triplet convolutional neural network have been applied in per-
son re-identification. In this paper, we propose a body struc-
ture based triplet convolutional neural network (BSTCNN)
for person re-identification. Specifically, a four-branch CN-
N architecture is built to learn features from different body
parts. Body-part features are then fused in score level with a
novel weighted distance layer which learns weights for each
body part. We further design an improved triplet loss func-
tion to speed up convergence and boost the performance. Ex-
perimental results on two challenging datasets (CUHK01 and
PRID2011) demonstrate that our approach significantly out-
performs the state-of-the-art methods.

Index Terms— Person Re-identification, Deep Metric
Learning, Weighted Distance Layer, Triplet Loss

1. INTRODUCTION

Person re-identification aims to match pedestrian images from
non-overlapping camera views, which is fundamental and es-
sential for surveillance and security systems. Despite signif-
icant advances, it still remains a challenging problem due to
camera view changes, pose variations, low resolutions, unsta-
ble illumination and occlusions.

The framework of existing methods typically consists of
two components: a feature extraction method to describe the
pedestrian images, and a corresponding similarity metric to
compute the distance of image pairs. Many traditional meth-
ods consider these two problems separately, focusing either
on improving suitable hand-crafted features [1–3], or finding
good distance metrics for comparison [4–6].
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Recently, Convolutional Neural Network (CNN) based
methods [7–12] gain increasing popularity in person re-
identification. Among these methods, deep metric learning
using triplet network has shown excellent performance by
incorporating the two above-mentioned components into a
unified framework. Shi et al. proposed a Constrained Deep
Metric Learning (CDML) [9] method and built their CNN
architecture in three branches to learn specific features from
each body part. Similarly, Cheng et al. proposed a multi-
channel parts-based convolutional neural network model [10]
under the triplet framework. These two methods both trained
the CNN in part based way so as to capture different statis-
tical properties of body parts. However, high level features
extracted from each body part are just simply concatenat-
ed in these methods, which can not effectively utilize the
body structure information since different body parts are of
different importance, as indicated by previous works [8, 10].

To deal with this problem, we propose a body structure
based triplet convolutional neural network (BSTCNN) which
consists of two main contributions:

(1) A novel weighted distance layer is designed to fuse
body-part features in score level. Weights for each body-part
distance are learned by back propagation algorithm.

(2) An improved loss function that combines both triplet
loss and contrastive loss is utilized to speed up convergence
and boost the performance.

Relation to prior work: Bromley et al. introduced
siamese network [13] using contrastive loss which minimises
intra-class distance and maximises inter-class distance inde-
pendently. Schroff et al. proposed a triplet network called
FaceNet [14] using triplet loss which forces intra-class dis-
tance to be less than inter-class distance. We borrow ideas
from both of these two works and demonstrate that a com-
bination of the triplet and contrastive loss produces better
performance. Many previous works [9–11, 15] proposed
multi-branch CNN architecture to learn specific features for
each body part. However, these methods simply concatenate
body-part features to construct a single vector and ignored the
importance of different body parts. This situation motivates
us to design a weighted distance layer to fuse features in score
level and learn weights for each body part.
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(a) Framework of BSTCNN (b) Four-Branch ConvNet Architecture

Fig. 1: Framework of our method (BSTCNN) and the corresponding Four-Branch ConvNet architecture.

2. PROPOSED METHOD

In this section, we first describe the overall framework of our
method (BSTCNN) and the corresponding architecture of the
four-branch convolutional neural network, then introduce the
weighted distance layer and the improved loss function. Fi-
nally, we present formulations of the optimization algorithm.

2.1. Overall Framework

The framework of our method is given in Fig.1(a). Let <
I, I+, I− > be a triplet example, where I and I+ belong to
the same person and I− is from a different person. Each im-
age is split into four overlapping parts and then fed into the
Convolutional Network (ConvNet). Through the ConvNet we
map image I into a learned feature space, where the i-th part
is represented as xi. Then the extracted features are sent into
a weighted distance layer, which learns weights for each part
and forms a weighted distance for image pair. We train the
network using an improved triplet-based loss function, which
aims not only to separate the positive pair from the negative
by a distance margin, but also to minimise the positive pair
distance d+ and maximise the negative pair distance d−.

2.2. Four-Branch Convolutional Neural Network

As shown in Fig. 1(b), the ConvNet has four branches to learn
specific features for each body part. The branches share the
same structure but their weights are not tied. The input im-
age is firstly divided into four overlapping parts and then fed
into respective branch. Each branch has two inception mod-
ules [16], one convolution layer and one fully connected layer.
The first inception module consists of 16 convolution kernels
of 5x5 and 16 kernels of 3x3. The output feature maps are
then concatenated together with a shortcut from the original

input, followed by a 2x2 MaxPooling layer. The second in-
ception module is similar to the first one, except that the con-
volution kernel sizes are 3x3 and 1x1, respectively. In these
two inception modules, kernels of different sizes are adopted
to capture features with different resolution. To reduce the
depth of the feature maps, we employ another convolution
layer with 16 kernels of 1x1. After a 2x2 AveragePooling
layer, the fully-connected layer generates an output of 256 di-
mensions. Note that ReLU is used in all layers.

Overall, through our four-branch ConvNet, each input im-
age is represented as (x1, x2, x3, x4) , where xi indicates the
256-D features for the i-th body part. These features are then
sent into weighted distance layer (see section 2.3). There are
only 16 kernels in each convolution layer of our ConvNet, so
it has fewer parameters compared with [9,10,15], while it still
gains remarkable improvements in accuracy.

2.3. Weighted Distance Layer

Once high level features are obtained, Euclidean distance and
triplet loss function are adopted to form the metric-cost part.
We found that the previous works [9–11] simply concatenat-
ed body-part features into one vector, which can not make
full use of the body structure information since different body
parts are of different importance. This motivated us to design
a novel weighted distance layer. The weighted distance layer
fuses body-part features in score level by learning weights for
each body-part distance.

Given a triplet< I, I+, I− > and its corresponding body-
part features, we first perform L2 normalization on xi to con-
strain them to live on the 256-D hypersphere, then the square
Euclidean distance of the i-th body part between I and I+, I
and I−, can be formulated as:

d+i = ||xi − x+
i ||

2
2, d

−
i = ||xi − x−

i ||
2
2 (1)
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We further adopt a weighted combination method to pro-
duce the distance between I and I+, I and I−:

d+ =

4∑
i=1

wi||xi − x+i ||
2
2, d

− =

4∑
i=1

wi||xi − x−i ||
2
2

s.t.

4∑
i=1

wi = 1

(2)

where wi is the weight parameter measuring the importance
of the i-th body part. Usually, the parameter wi can be tuned
by grid search or random search. However, the extremely
long training time of deep learning methods makes it compu-
tationally infeasible. That’s why we design the weighted dis-
tance layer to learn parameter wi automatically during train-
ing. In the weighted distance layer, wi is updated by standard
back propagation algorithm, just the same way as parameter-
s updated in the convolution layer and fully connected layer.
Detailed formulas are given in section 2.5.

2.4. Improved Loss Function

Triplet loss is proposed in [14] and it becomes popular in deep
metric learning methods. Given a triplet and the correspond-
ing intra-class distance d+ , inter-class distance d−, the triplet
loss can be defined as:

L = max(0, d+ +m− d−) (3)

where m is a margin that is enforced between positive and
negative pairs. This loss serves to separate the positive pair
from the negative by a distance margin m. However, the
triplet loss function does not constrain how close the posi-
tive pairs or how far the negative pairs should be. It may lead
to a situation that both d+ and d− are small (or large), even
when the margin m has been ensured. This will slow down
the convergence and drop the re-id performance.

To solve this problem, we add a term to the triplet loss
function inspired by the contrastive loss [17]. The new loss
function is defined as:

L̂ = L+ λ(d+ +max(0, t− d−)) (4)

where λ is a trade-off parameter. To avoid overfitting, a
threshold t is added to the negative pair distance d− , so that
when d− is larger than t, it makes no contribution to the loss.
It should be noted that even when d− is larger than d+ by a
predefined margin, i.e. L = 0, the learning process will con-
tinue. The secret lies in the second term d++max(0, t−d−),
which contributes to the loss when L = 0. Hence, this new
loss function helps to speed up convergence.

In summary, the new loss function serves not only to sep-
arate the positive pair from the negative pair by a distance
margin, but also to minimise positive pair distance and max-
imise negative pair distance.

2.5. Optimization

As a variant of triplet loss, our improved loss function L̂ is
convex, which can be optimized by the back propagation al-
gorithm. Its gradients with respect to xi, x+

i , x−i are:

∂L̂

∂xi
= 2wi(x−i − x+i )Id++m−d−>0 + 2λwi(xi − x+i )

+ 2λwi(x−i − xi)It−d−>0

(5)

∂L̂

∂x+
i

= 2wi(x+i − xi)(λ+ Id++m−d−>0) (6)

∂L̂

∂x−i
= 2wi(xi − x−

i )(Id++m−d−>0 + λIt−d−>0) (7)

For updating the body-part weights wi, the gradient with
respect to wi is computed by:

∂L̂

∂wi
= d+i (λ+ Id++m−d−>0)

− d−i (λIt−d−>0 + Id++m−d−>0)

(8)

In the above equations, the indicator function Icondition =
1 if condition is true; otherwise Icondition = 0. With the
above derivations, the loss function in Eq.(4) can be easily
integrated in back propagation during training.

3. EXPERIMENTS

In this section, we evaluate our method on CUHK01 [18] and
PRID2011 [19] datasets. Based on the single-shot setting,
we report the experimental results in the form of the average
Cumulated Matching Characteristic (CMC) curve for 10 tri-
als. The proposed method is implemented based on the Keras
deep learning Framework1 and our codes are open source2.

3.1. Experimental Settings

Datasets and Evaluation Protocol
CUHK01 dataset3 contains 971 persons captured from t-

wo disjoint camera views. Each person has two images per
camera view. Following the protocol of [8], we use 871 per-
sons for training and the rest 100 persons for testing. λ =
0.1,m = 0.2, t = 0.6 is set for this dataset.

PRID2011 dataset4 contains images recorded by two
cameras. Camera view A and B contain 385 and 749
persons, respectively, with 200 persons appearing in both
views. Following the protocol of [10], we randomly se-
lect half of the persons for training and half for testing.
λ = 0.2,m = 0.2, t = 0.6 is set for this dataset.

1https://github.com/fchollet/keras
2https://github.com/wepe/BSTCNN

3http://www.ee.cuhk.edu.hk/˜rzhao/
4https://lrs.icg.tugraz.at/datasets/prid/
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(a) CUHK01 (b) PRID2011

Fig. 2: The CMC curves of different methods on (a) CUHK01 and (b) PRID2011.
Fig. 3: Rank-1 accuracies vs Iteration with
our improved loss and original triplet loss.

Data augmentation. Person re-id datasets are relatively
small. To address the over-fitting problem, we augment the
training sets by rotating each pedestrian image. Specifically,
we rotate the original image with a random degree between
[-15◦ , 15◦ ]. We also horizontally flip each image.

Parameters setting. The weights of the ConvNet are ini-
tialized using the method proposed in [20], i.e. he normal.
Each of the four body-part weights is uniformly initialized to
0.25. As for the triplet selection, we adopt online mini-batch
strategy which performs both moderate positive [9] and semi-
hard negative mining [14]. Specifically, for each iteration, we
randomly select 40 persons from the training set which gen-
erates 300 triplets in total. The training converge within 6K
iterations with Adam gradient decent and it takes roughly 6-
10 hours with a NVIDIA GeForce GTX 1080 GPU.

3.2. Experimental Results

Comparison with state-of-the-arts. Experiments are con-
ducted on CUHK01 and PRID2011 datasets to compare our
BSTCNN with some state-of-the-art methods, including F-
PNN [7], ITML [21], LMNN [22], LDML [23], eSDC [24],
KISSME [4], DeepM [11], CDML [9], SIR-CIR [12], ID-
LA [8] and the work by Cheng [10].

Fig.2 (a) illustrates the CMC curves and the rank-1 accu-
racies of these methods on CUHK01 dataset. We can see that
the rank-1 accuracy of the proposed method reaches 73.7%,
which is 1.9% higher than the previous best performance
method SIR-CIR [12].

Fig.2 (b) illustrates the CMC curves and the rank-1 ac-
curacies of these methods on PRID2011 dataset. Our method
also outperforms other state-of-the-art methods, with a 23.9%
rank-1 accuracy. Furthermore, our rank-20 accuracy reaches
66.0%, which is a remarkable improvement.

Evaluation of the improved loss function. To evaluate
the effectiveness of the improved loss function, we compare
the training process of using original triplet loss and using
our improved loss on the CUHK01 dataset. Except the loss
function, other settings are the same. As depicted in Fig.3,
our model using original triplet loss converges after about 3k

Table 1: Body-part importance on CUHK01 and PRID2011.

Dataset w1 w2 w3 w4

CUHK01 0.284 0.271 0.247 0.198
PRID2011 0.274 0.250 0.245 0.231

iterations and finally reaches about 70.0% rank-1 accuracy.
When using our improved loss function, it converges after
about 2k iterations and finally reaches about 75.0% rank-1 ac-
curacy. This experimental result indicates that the improved
loss function helps to speed up convergence and boost the per-
formance.

Analysis of the body-part importance. When the
training converged, we can output the body-part weights
w1,w2,w3,w4. We average them for 10 trials and the results
are shown in Table 1. It is interesting to observe that both
on CUHK01 and PRID2011 datasets, body part 1 gains the
largest weight, and the value gradually decreases from body
part 1 to part 4. This result is reasonable since body part
1 includes face and shoulders, where more discriminative
features can be extracted. As we move down the body, less
reliable features can be extracted so they contribute little to
the person re-id task. This result prove the effectiveness of
our weighted distance layer.

4. CONCLUSIONS

This paper introduces an improved triplet convolution neural
network for person re-identification. Our network contains
two novel elements: a weighted distance layer that learns
weights for each body part, an improved loss function that
speeds up convergence and boosts the performance. Ex-
perimental results demonstrate that our approach achieves
better performance than the state-of-the-art methods both on
CUHK01 and PRID2011 datasets. In the future, we will
investigate other ways to utilize the body structure informa-
tion, and study how to accelerate convergence of the triplet
convolutional neural network.
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