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ABSTRACT

In content-based image retrieval systems, visual content of the im-
age is the criterion for measuring image similarity. We propose a
method to solve the problem of loss of spatial information of ob-
jects when local descriptors from an image with multiple objects
are aggregated to form a global representation. In our approach, af-
ter saliency-based spatial partitioning, local feature descriptors from
distinct sub-regions are aggregated to form a bag of Fisher Vectors
representation. This helps in suppressing the information from back-
ground clutter in scenes while forming the global descriptor. The
retrieval performance was evaluated in synthetic and real datasets.
The evaluation results show that the bag of Fisher Vectors represen-
tation gives better performance compared to baseline approach using
Fisher Vectors.

Index Terms— Fisher Vectors, Content-based image retrieval,
Saliency detection, Spatial partitioning.

1. INTRODUCTION

In content-based image retrieval systems (CBIR) [1], images are re-
trieved from the database based on their visual content. The visual
content is uniquely stored in the corresponding feature descriptors
for each image. The global descriptor is formed from these fea-
ture descriptors and using a similarity measure, the images in the
database are ranked and retrieved. The main problem associated
with local feature descriptors is that they are large in number and
the descriptor processing may become memory intensive and com-
putationally complex. There are various methods to overcome this
problem and compress descriptors to form a global image represen-
tation.

Some of the prominent global representation methods are Bag of
Visual Words (BoVW) [2], Vector of Locally Aggregated Descrip-
tors (VLAD) [3], and Fisher Vectors (FV) [4]. In BoVW model, the
image is represented as a histogram of visual words. The main short-
coming of BoVW representation is that the local statistics of feature
vectors are never taken under consideration. In addition there is a
loss of information due to lossy descriptor quantization. The VLAD
model tries to surmount these shortcomings to a large extent. It is
almost similar to the BoVW representation including the generation
of visual words. After the generation of visual words, instead of
just embedding the information about the particular visual words to
which feature points are closer to, the distance vector to the nearest
visual word is computed and stored. Thus, this model tries to en-
code the first order statistics. Nevertheless, the VLAD model fails in
incorporating a probabilistic visual vocabulary as it uses K-Means
clustering to form the visual words. In the FV model, a Gaussian
Mixture Model (GMM) is used to model the feature space. It incor-
porates first-order and second-order statistics which helps in storing

more information about the distribution of feature vectors in the fea-
ture space by measuring the deviation from the GMM model w.r.t
the mean and the covariance of the distribution.

Even though global image representation summarizes the visual
content, it suffers from some limitations especially when the image
contains an object in the foreground with heavy background clutter
or multiple objects. Some of the limitations are: (1) Spatial infor-
mation is completely lost, (2) global descriptors ignore the geometry
of objects present in the image, (3) global descriptors mix the fore-
ground and background information, and (4) object features are not
always captured in presence of background clutter.

The above mentioned limitations led to exciting research in im-
proving global descriptors with spatial information. Lazebnik et al.
[5] proposed a method which is popularly known as the Spatial Pyra-
mid Matching (SPM) which tries to encode spatial relationship of
features at different pyramid levels. Grzeszick et al. [6] imposed
spatial information by extending feature descriptor by including spa-
tial coordinates. Zhang et al. [7] exploited the similarity in geometry
of objects belonging to same category. A joint distribution between
the low-level descriptors and patch locations are considered in [8].

In a retrieval system, which focuses on objects present in a vi-
sual scene, it is preferable to extract more local features from the
objects than the background. Saliency detection models provide ex-
cellent cues about the possible object locations in an image with less
computational overhead. It closely models the selective processing
of human visual system and thus helps in identifying regions in an
image which tend to be object locations.

For natural images, the saliency detection accuracy is affected if
the foreground or background contains lot of high-contrast patterns.
When the image contains small scale and large scale patterns, the
saliency map will generate lots of possible object locations which
will make less contribution for an object based image retrieval sys-
tem. In addition, for natural images the presence of high textured
background is always a hindrance in detecting the most salient re-
gion in the image. These problems of saliency extraction in a visual
scene are tackled to a great extent by an efficient and robust multi-
layer approach proposed by Yan et al. [9]. We extract the saliency
cues to identify possible spatial locations of objects using this hier-
archical model.

In this paper, we address the problem of loss of spatial infor-
mation of objects when a global descriptor is formed by forming
a Bag of Fisher Vectors (BoFV) representation of images. Spatial
regions are identified by using saliecy maps which are further pro-
cessed by local thresholding, morphological closing operation and
contour detection. Two types of spatial partitioning such as rectan-
gular and contour partitioning are proposed. The local features from
each sub-region are aggregated to form BoFV. Images with single
objects are used as queries. The FV corresponding to the most sim-
ilar sub-region is retrieved which in turn maps to the corresponding
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parent image with multiple objects. We have conducted our exper-
iments on both synthetic and real datasets and have compared our
result with Fisher Vector based representation.

2. FISHER VECTOR MODEL

Fisher Vector model generates a probabilistic visual vocabulary. The
main advantage of this model over BoVW and VLAD is that FV
offers the flexibility to define a kernel from a generative process
which in turn considers how the data is generated. BoVW model
is a particular case of FV in which the deviation is measured only
w.r.t weights of the generative process which is a Gaussian Mix-
ture Model (GMM). The parameters of this model are estimated
using a large pool of local descriptors obtained from a training
dataset using the Expectation Maximization (EM) algorithm [11].
The GMM model which is basically the weighted sum of N Gaus-
sians is represented as pλ(a) =

∑N
n=1 wnpn (a), where pn rep-

resents Gaussian n. The parameters λ of this model are given by
λ = {wn,mn,Σn;n = 1...N} which denotes the weight, mean
and covariance matrix of Gaussian n respectively. The FV model
embeds the deviation of local descriptors of an image from this
generative model. Consider a set of K descriptors in A, where
A = {ak, k = 1...K}. The descriptors are of D-dimensions. The
gradient of the log-likelihood of the descriptors on the model is
given by:

GAλ = 5λ log pλ (A) . (1)

This describes the way in which the parameters of the model are
to be modified to better fit the local descriptors under considera-
tion. Jaakkola and Haussler [10] have proposed a measure to find
the similarity between 2 samples A and B using the Fisher Kernel
KFK (A,B) which is defined as:

KFK (A,B) = GA
T

λ F−1
λ GBλ , (2)

where Fλ is the Fisher Information Matrix (FIM). Since Fλ is pos-
itive semi-definite, it can be decomposed using Cholesky decompo-
sition, as F−1

λ = CTλ Cλ. This helps in modifying equation 2 as:

KFK (A,B) = GA
T

λ CTλ CλG
B
λ = gA

T

λ gBλ (3)

where gAλ is expressed asCλGAλ . The normalized gradient vector gAλ
is called the FV ofA. The main advantage of representing the kernel
function as a dot-product gA

T

λ gBλ is that it is similar to defining a
Euclidean space where the distances between feature vectors can be
calculated by using the kernel function.

The GMM assigns each descriptor ak to the n-th mode of the
GMM with the posterior probability:

φk (n) =
wnpn (ak)∑N
l=1 wlpl (ak)

. (4)

The deviation measure of a descriptor ak w.r.t the mean and covari-
ance are:

gAmn
=

1

K
√
wn

K∑
k=1

φk (n)
ak −mn

σn
(5)

gAσn =
1

K
√

2wn

K∑
k=1

φk (n)

[
(ak −mn)2

σ2
n

− 1

]
(6)

in which gAmn
and gAσn are vectors of size D. The final FV is a con-

catenation of deviations gAmn
and gAσn for N modes of the Gaussian

and is therefore of dimension 2×D×N.

3. SALIENCY DETECTION

For spatial partitioning of images, saliency cues are extracted to
identify possible object locations and the different stages involved
in the hierarchical model is explained below.

3.1. Extraction of image layers at different scales

Image layers are representation of images with different degrees of
details. In the lowest layer, fine details are retained while in higher
layers, larger structures are preserved. In the preprocessing stage, an
initial over-segmentation using watershed segmentation [12] method
is employed. A region can be defined to be homogeneous, if it can be
encompassed by a s× s bounding box such that the ratio of number
of similar pixels to number of non-similar pixels within the bounding
box is above a threshold.

Once the scale s of a region is determined, neighboring segments
within each layer are merged in an iterative manner. In order to
accomplish this, each region is sorted initially according to the scale
in an ascending order. For each layer, scale thresholds are chosen
such that finer details are retained in first layer. The higher layers are
generated from the lower layers using similar procedure.

3.2. Extraction and fusion of saliency cues

In the second stage of saliency computation, for each extracted layer,
saliency cues are generated. The main 2 saliency cues used are con-
trast and location. The local contrast cue Cx for a region Rx with n
neighboring regions is computed as the weighted sum of color dif-
ferences from regions Ry where y varies from 1 to n and is given
by:

Cx =

n∑
y=1

w (Ry)ϕ (x, y)
∥∥cx − cy∥∥2 , (7)

where cx and cy denote the color information of regionsRx andRy ,
respectively. The number of pixels in the neighboring regions are
accounted by the term w (Ry) . This term helps in weighing regions
having more pixels with higher weight which in turn increases its
contribution to the contrast cue. The term ϕ (x, y) = exp

{
−d/σ2

}
controls the influence of spatial distance between the regions x and
y. d is the Euclidean distance between region centers and σ controls
the size of neighborhood. For instance in top layer, σ is large making
a global comparison between all the regions.

The next cue information is location. Psychological studies [13]
prove that humans tend to focus more on the central region of the
image and the central pixels contribute more towards the saliency
maps. The location cue Hx is modeled as:

Hx =
1

w (Rx)

∑
px∈Rx

exp
{
−λ
∥∥px − pc∥∥2} . (8)

Here, pc represents the coordinate of the image center and px models
the coordinates of regions identified in that particular layer. The
parameter λ in equation 8 is used whenHx is combined with the Cx
to form the combined saliency cue as ŝx = CxHx. The single-layer
saliency cue maps are then fused by a weighted average approach to
form the final saliency map (Fig. 1 (a)).

3.3. Generation of object masks from saliency maps

Thresholding is applied to generate object masks from the saliency
maps (Fig. 1 (b)). In the case of images with one object, a unique
global threshold T ∗ is determined by Otsu thresholding [14]. For
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Fig. 1: (a) Saliency map, (b) Otsu thresholding, (c) Local thresholding and morpho-
logical closing, (d) Spatial sub-regions identified.

images with multiple objects, the use of a global threshold value
might generate inaccurate object masks since the saliency maps gen-
erated depends on the local object contrast with the background.
This problem is circumvented by computing local threshold value
in a sub-window. A circular window is moved across the image and
Otsu thresholding is computed in each sub-window (Fig. 1 (c)). Af-
ter thresholding, unwanted structures such as holes and bridges are
eliminated by closing operation. Closing helps in keeping spatially
closer regions together instead of creating unwanted partitioning.

3.4. Detection of contours and elimination of false detections

After morphological operation, the edges of the binary mask are used
to find the respective contours of the objects (Fig. 1 (d)). The bound-
ing rectangle around the contour creates sub-images which can be
used for partitioning the image space. Some false detections are
identified at this stage. These false detections must be removed since
it results in unwanted partitioning of the image space. For avoiding
false detections of object locations, 2 constraints are imposed in the
retrieval system during the formation of contours. They are: (1)
Eliminate contours which are within a contour, (2) eliminate con-
tours with radius of minimum enclosing circle below a threshold.
The first criterion makes sure that only the most external contour is
extracted when a set of contours are identified in a region to avoid
unnecessary partitioning. The second criterion assures that small
contours are eliminated. It is achieved by using a threshold for the
radius of minimum enclosing circle around the contour.

3.5. Spatial partitioning of images

For spatial partitioning of the images based on the contours iden-
tified, mainly 2 models are proposed. We have identified possi-
ble object locations and have formed bounding boxes around ob-
jects. These bounding boxes are used to partition the image space.
In rectangular partitioning of the image space, each rectangular re-
gion around the contour forms a sub-region. These sub-regions are
processed individually to obtain separate FV representations. Even
though rectangular partitioning eliminates the information from the
other objects present in the image, the background information is
still present in the sub-region. For solving this problem, and to in-
crease the retrieval accuracy, contour partitioning was introduced. In

Fig. 2: Block diagram showing the generation of Bag of Fisher Vectors.

contour partitioning, the contour boundary is used to sub-divide the
image. This assures that the background information is completely
suppressed while forming the FV for a particular sub-region. Thus,
each image in the database is represented as a BoFVs and if any of
these FVs have a minimum Euclidean distance with the FV of query
image, the image will be retrieved. The block diagram showing the
formation of BoFV is shown in Fig. 2.

4. EXPERIMENTAL RESULTS

4.1. Evaluation criterion

Average precision (AP) helps in having a metric which can compare
the performance of retrieval systems. The definition of AP is the
average of precision when recall varies from 0 to 1. For each query
image, the AP is computed and it is averaged over the total number
of queries to obtain the Mean Average Precision (MAP). In order to
compare two retrieval systems, MAP is measured at different values
of retrieved images (N).

4.2. Evaluation of retrieval results - Single object

First we measured the retrieval performance on images with sin-
gle objects to see how the removal of background clutter affects
the retrieval performance. The retrieval results obtained for Caltech
dataset [15] for 8 different categories is discussed in this section. Fig.
3 shows the bar graph showing the average precision (AP). For the
categories Hibiscus, Ibis, Hot-air-ballon, and Bonsai, BoFV (fore-
ground and background FV) representation improved the results as
the saliency maps generate good spatial partitioning between the ob-
ject and background. There is decrease in APs by 3.43, 4.98 and
4.75 for the categories Brain, Buddha and Eiffel-tower respectively
due to spatial partitioning. This slight decrease in performance is due

Brain Hibiscus Ibis Hot-
air-

ballon

CockroachEiffel-
tower

BonsaiBuddha

40
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Fig. 3: AP in % for 8 categories from the Caltech dataset with contour partitioning
and baseline approach.
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to the loss of information from objects when we have poor saliency
maps. For Eiffel-tower, which represents a static scene, background
might add information about the scene as background remains con-
stant in almost all images. Thus, removal of background in this case
decreases the performance. For the category which contains cock-
roach images, the saliency maps are good but still there is a huge
drop in AP by a factor of 24.92 with spatial partitioning. The reason
for this might be the lack of texture in the objects and loss in infor-
mation from the minute structures such as legs and antennas of the
object which are lost when the saliency maps are formed.

4.3. Evaluation of retrieval results - Multiple objects

We have conducted our experiments on both synthetic and real
datasets. The synthetic dataset is created from the Oxford 17 cate-
gory flower dataset [16]. 1000 images are formed by combining 4
random images from 17 categories to form a multi-object dataset.
Query images consist of 40 single object images from 17 categories
making 680 query images. The performance of the retrieval system
on synthetic dataset with different number of Gaussians to form the
GMM model is evaluated. The retrieval results become better with
higher number of Gaussians at the expense of increased FV size.
Table 1 shows the MAP obtained at different retrieval number of
images for 3 different cases (Fig. 4) with 64 and 128 Gaussians to
model the GMM. The best results were obtained with 128 Gaus-
sians and contour partitioning. However, 64 Gaussians and contour
partitioning gives better results than 128 Gaussians and rectangu-
lar partitioning. Thus, the impact of contour partitioning is higher
than the impact of increasing Gaussians in the GMM. The retrieval
results are lower without spatial partitioning as shown by the MAP
obtained for baseline approach with 128 and 64 Gaussians in the
GMM.

Table 1: MAP in % on synthetic dataset with multiple objects.

No. of retrieved images 5 20 60 100
Contour partitioning, 128 94.93 81.65 66.82 60.48
Contour partitioning, 64 94.72 79.92 65.45 59.26

Rectangular partitioning, 128 93.38 76.85 59.99 53.45
Rectangular partitioning, 64 91.39 74.87 58.90 52.40

Baseline approach, 128 92.41 74.09 57.33 50.55
Baseline approach, 64 90.35 72.54 56.48 49.94

Table 2: MAP in % on real dataset with multiple objects.

No. of retrieved images 3 7 11 15
Contour partitioning, 128 26.04 27.34 25.48 24.98
Baseline approach, 128 12.36 14.24 14.44 13.90

For conducting experiments in real dataset, Giuseppe toys
dataset [17] was considered. Fig. 5 shows the spatially different
regions identified in some of the images. As expected the partition-
ing is better with a good saliency map. We added the images from
the clutter-257 category from the Caltech dataset [15] which con-
tains 827 images along with the 52 multi-toy images making a total
of 879 images in the first database. This was done to have more im-
ages in the database to measure the retrieval performance. By using
contour partitioning, 343 spatially partitioned regions are identified
which resulted in a second database with 827 + 343 = 1170 im-
ages. The FVs are formed for all the images using a GMM with 128

(a) Query image

(b) Without
partitioning

(c) Rectangular
partitioning

(d) Contour
partitioning

Fig. 4: Top 4 retrieval results in synthetic dataset with multi-object images for the
query image with single object in (a) for 3 different cases. Images in black boxes repre-
sent the wrong retrievals.

(a) (b)

Fig. 5: Contours and the corresponding spatial regions identified for the toy images
with multiple toys. (a) Images with proper partitioning. (b) Images with wrong detec-
tions because of heavy background clutter and overlap between objects.

Gaussians. The database has 124 images with a single toy which
belong to 31 different categories making 124 queries. Table 2 shows
the retrieval results on the above 2 databases. We could observe that
spatial partitioning improved the retrieval performance.

5. CONCLUSIONS

We proposed a method to solve the problem of loss of spatial infor-
mation while forming global descriptors by forming a BoFVs rep-
resentation. A saliency model was used to identify the spatial loca-
tions of the objects. Two types of spatial partitioning were evaluated.
Even though, contour partitioning tends to trim the object regions in
some cases, it was found better than using rectangular partitioning
which adds background information. Furthermore, it was observed
that the contour partitioning is having a higher impact in increas-
ing the retrieval accuracy than the increase in number of Gaussians
in the GMM. An interesting research direction will be to compress
these BoFVs to form a compact representation as now we require
more memory to store FVs corresponding to each spatial region.
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