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ABSTRACT

Real-world visual classification tasks typically need to deal
with data observed from different domains. Inspired by
canonical correlation analysis (CCA), we propose an en-
hanced CCA with local density for associating and recog-
nizing cross-domain data. In addition to maximizing the
correlation of the projected cross-domain data, our CCA
model further exploits the local density information observed
from each domain. As a result, our CCA not only exhibits ex-
cellent abilities in identifying representative data, noisy data
like outliers can be further suppressed during the derivation
of our CCA subspace. In our experiments, we successfully
apply the proposed methods for solving two cross-domain
classification tasks: person re-identification and cross-view
action recognition.

Index Terms— Canonical Correlation Analysis, Person
Re-identification, Cross-View Action Recognition

1. INTRODUCTION

When dealing with real-world visual classification problems,
data observed beforehand and those to be recognized might be
collected from different domains and thus exhibit distinct fea-
ture distributions. For example, one might need to recognize
the context of an image captured by a smartphone, while the
training data are obtained from the Internet. As a result, how
to adapt the information from the source to target domains of
interest is a challenging task.

For solving the above problem of domain adaptation, we
typically focus on learning feature or classification models in
the target domain (or a common feature space) by leverag-
ing label and data information across domains. For exam-
ple, Sugiyama et al. [1] proposed an instance re-weighting
approach of covariate shift, which derives the target classifi-
cation model by re-weighting the labeled samples projected
from the source domain, with the goal of minimizing the ap-
proximated empirical classification error in the target domain.
Such domain adaptation methods have been successfully ap-
plied to applications like cross-domain object recognition or
cross-language text categorization.

Fig. 1: Person re-identification (PR-ID) as a cross-domain vi-
sual classification task. Note that each column shows images
of the same person captured by cameras in different views.

To identify the identity of the subjects across different
cameras, person re-identification (PRID) can also be viewed
as a cross-domain classification problem (see Figure 1),
which plays an important role in applications of surveil-
lance and video forensics. Since the cameras are typically
distributed at locations with very different angle and lighting
conditions (plus possible occlusion), it makes the matching
of an image pair captured by different cameras very difficult.

Recently, researchers advanced learning-based approaches
for solving PRID problems. For instance, Zheng et al. [2]
proposed the PRDC algorithm, which is able to calculate and
compare the relative distances across camera pairs. On the
other hand, Prosser et al. [3] and Avraham et al. [4] regarded
PRID as ranking and domain adaptation problems, respec-
tively. In addition, metric learning has been applied to derive
a proper distance metric, aiming at projecting cross-camera
images into a feature space for matching purposes. Recently
developed approaches include Large Margin Nearest Neigh-
bor (LMNN) [5], Information Theoretic Metric Learning
(ITML) [6], and Logistic Discriminant Metric Learning [7].

Canonical correlation analysis (CCA) [8] is a subspace
learning algorithm, which aims at learning a common feature
space by observing cross-domain data pairs, with the objec-
tive to maximize the correlation between the projected cross-
domain data pairs. A major advantage of CCA is its ability of
relating heterogeneous cross-domain data (i.e., source and tar-
get domain data in different feature representation). CCA has
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Fig. 2: Illustrations of standard and our enhanced CCA with local density. Note that our CCA is able to identify instances with
higher contributions (shown in larger dots), and thus exhibits improved ability in suppressing outlier data.

been successfully applied to solve a variety of cross-domain
visual classification tasks including PRID.

Several variants if CCA has been proposed, including
the Ranking CCA for learning query and image similarities,
which simultaneously learns a bilinear query image similarity
function and adjusts the subspace to preserve the preference
relations.[9] Luo et el. propposed the tensor canonical corre-
lation analysis, which maximizes the canonical correlation of
more than two views simultaneously.[10]

In this paper, we propose a novel learning-based algo-
rithm for cross-domain visual classification. Based on CCA,
our method aims at deriving a common feature space which
maximizes the correlation between projected cross-camera
data. Moreover, we exploit local density information ob-
served from cross-domain data, which identifies the contri-
butions of each instance during the above association. As
verified in our experiments, our method is able to better as-
sociate cross-camera data while suppressing noisy or outlier
data observed from either domain.

We now summarize our contributions as follows:

• We propose an enhanced CCA with local density
observed from cross-domain data for solving cross-
domain visual classification problems.

• Our proposed model is able to identify representative
instances while suppressing contributions from noisy
or outlier data when relating cross-domain data.

• We apply our enhanced CCA for solving the tasks of
person re-identification and cross-view action recogni-
tion. Our method is shown to perform favorably against
CCA-based approaches.

2. OUR PROPOSED METHOD

2.1. A Brief Review of Canonical Correlation Analysis

For the sake of completeness and the ease of discussion for
the remaining of this paper, we now provide the formulation

of standard CCA. Given n data pairs across two different do-
mains X = [x1,x2, ...xn] ∈ Rdx×n,Y = [y1,y2, ...yn] ∈
Rdy×n, CCA derives a pair of projection vectors wx and wy ,
which maximizes the correlation coefficient ρ whic is calcu-
lated as follow:

max
wx,wy

ρ =
wT

xXYTwy√
wT

xXXTwx

√
wT

y YYTwy

. (1)

We note that, solving the optimization problem for CCA can
be equivalently formulated as follows:

max
wx,wy

wT
x

n∑
i=1

n∑
j=1

(xi − xj)(yi − yj)
Twy

s.t.wT
x

n∑
i=1

n∑
j=1

(xi − xj)(xi − xj)
Twx = 1

wT
y

n∑
i=1

n∑
j=1

(yi − yj)(yi − yj)
Twy = 1.

(2)

Later in Section 2.2, we will apply and extend the above for-
mulation for our proposed CCA algorithm.

2.2. Enhanced CCA with Local Density

We now introduce our proposed method for solving PRID
problems. In standard CCA, all training cross-domain data
pairs are viewed as equally important. In other words, they
would be applied to derive the CCA projections with the same
contributions.

However, when dealing with real-world image data, we
should be able to identify those with more representative or
discriminating information, while suppressing the ones which
are corrupted due to noise or occlusion. Based on the above
observation and motivation, we present an enhanced CCA by
exploiting cross-domain local density information.

In our work, we consider training instances with more
neighbors are more representative (i.e., exemplars), and thus
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such data are less likely to be the outliers for affecting the
resulting CCA model. To be more specific, we aim at iden-
tifying cross-domain training instances with different corre-
sponding weights ai, bi. These weights can be easily calcu-
lated based on the distance between each instance of interest
to its neighbors. As a result, our enhanced CCA with local
density can be formulated as:

max
wx,wy

wT
x

n∑
i=1

n∑
j=1

(aixi − ajxj)(biyi − bjyj)
Twy

s.t.wT
x

n∑
i=1

n∑
j=1

(aixi − ajxj)(aixi − ajxj)
Twx = 1

wT
y

n∑
i=1

n∑
j=1

(biyi − bjyj)(biyi − bjyj)
Twy = 1.

(3)

In the proposed CCA formulation in (3), the instance
weights ai, bi are calculated by the sum of the observed local
density S, i.e.,

ai =

n∑
k=1

Sx(i, k) (4)

bi =

n∑
k=1

Sy(i, k), (5)

where the local density is defined as an exponentially decay-
ing function of distance with a threshold t. For each instance
pair (mi,mj) in either domain m ∈ {x,y}, we have

Sm(i, j) =

{
e−d(mi,mj)/d̄, if e−d(mi,mj)/d̄ > t

0, otherwise,
(6)

and d̄ = 2

n∑
p=1

n∑
q=1

d(mp,mq)/n(n− 1). (7)

In the above formulation, d(mi,mj) denotes the distance be-
tween mi and mj , and d̄ is the mean distance of all data pairs
within the same domain. We note that, in order to suppress
the contribution of corrupted image data due to occlusion, we
separate such images from the remaining ones by taking the
Chebyshev distance as the distance metric, which is the max-
imal distance between variables of vectors.

With the above derivations, our CCA projection vectors
wx and wy can be solved by a generalized eigenvalue de-
composition problem as follow:

Cxy(Cyy)−1CT
xywx = ηCxxwx, (8)

where Cxy = αxαy
T ,Cxx = αxα

T
x ,Cyy = αyα

T
y , αx

and αy denote the derived weighted matrices from the asso-
ciated domain with data mean removed. To avoid singularity
problems and overfitting, we add regularization terms λx, λy
and solve the following problem instead:

Cxy(Cyy + λyI)
−1CT

xywx = η(Cxx + λxI)wx. (9)

Finally, we derive wy by C−1
yy Cxywx/η.

2.3. Locality-Preserving CCA vs. Our CCA

It is worth noting that, locality-preserving CCA (LPCCA) [11]
and ALPCCA [12] are also extensions of CCA, which focus
on preserving the local structure observed from either do-
main data when deriving the common feature space. We now
explain how our CCA is different from such locality preserv-
ing versions, and why ours is expected to achieve improved
performance when associating cross-domain data.

The formulation of LPCCA is derived as follow:

max
wx,wy

wT
x

n∑
i=1

n∑
j=1

Sx(i, j)(xi − xj)Sy(i, j)(yi − yj)
Twy

s.t.wT
x

n∑
i=1

n∑
j=1

Sx(i, j)(xi − xj)Sx(i, j)(xi − xj)
Twx = 1

wT
y

n∑
i=1

n∑
j=1

Sy(i, j)(yi − yj)Sy(i, j)(yi − yj)
Twy = 1.

(10)

And, that for the ALPCCA is written as:

max
wx,wy

ρ =
wT

xX(I + Sx + Sy)YTwy√
wT

xXXTwx

√
wT

y YYTwy

. (11)

From the above equations, it can be seen that LPCCA
aims at preserving locally relative (or structural) information
observed from data in each domain, while ALPCCA adds ad-
ditional terms for integrating the above observed information
into the data covariance matrix.

As verified later by our experiments, both LPCCA and
ALPCCA do not exhibit sufficient abilities in identifying and
distinguishing between representative and noisy data (as ours
does). From (3), we see that our CCA derives sample-wise
weighting and applies such local density information for
learning the cross-domain transformation. This is very dif-
ferent from the above existing locality-preserving versions,
which observe pair-wise data information even the instances
are noisy or corrupted.

3. EXPERIMENTS

3.1. Person Re-Identification

We first address the cross-domain visual classification task
of person re-identification. To conduct the experiments, we
take the VIPeR [13] dataset, which contains 632 persons with
2 images per person captured by 2 cameras. Images in this
dataset has extensive variations in viewpoint, pose, and illu-
mination. We randomly pick 316 persons for training and the
remaining 316 persons for testing. Example images of VIPer
dataset are shown in Figure 1.

We resize each image into 128*64 pixels, and divide it
into horizontal stripes. For each stripe, we extract weighted
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color histogram from 8 channels in the RGB, Lab, and HSV
color spaces (discarding the V channel). To emphasize the
center of the image and eliminate background influence, the
weights are decided by an exponential Gaussian kernel. The
color histograms are concatenated with a 4-bin histogram of
oriented gradients (HOG) descriptors and Local Binary Pat-
terns (LBP) extracted on a part of the image centered at the
torso and legs. In our work, we fix parameters λx = λy =
η = 1, t = 0.65.

After deriving the CCA subspace using the training image
pairs, we project the probe images and the gallery ones onto
this space for matching purposes. To measure the similar-
ity between projected cross-domain data, we apply the cosine
similarity and search for the nearest neighbor of each probe
image in the gallery.

We compare our results with those produced by baseline
and popular PR-ID methods such as PRDC [2], DDC, EIML
[14], ICT [4], RPLM [15], SalMatch [16], and eSDC [17].
We also compare with the original CCA,LPCCA [11],and
ALPCCA [12]. We conduct the experiments with 5 random
trials, and lists the performance in Table 1. It can be observed
that our proposed CCA improved the rank 1 recognition rate
by 12% compared to the original CCA, and achieved compa-
rable performance as SalMatch did. At rank 10 and above,
our method outperforms all other compared methods. Both
LPCCA and ALPCCA were not able to produce satisfactory
performance, as explained in Section 2.3.

We note that, while a deep-learning version of CCA [18]
is available, which replaces the two projection vectors in the
standard CCA (one for each domain) by two neural networks.
However, after implementing this CCA, we did not observe
satisfactory results on solving this PR-ID problem (possibly
due to the lack of a large amount of data for training). There-
fore, we do not include its results in Table 1.

3.2. Cross-View Action Recognition

In addition, we apply our proposed method for solving
cross-view action recognition problems. We consider the
IXMAS [19] dataset, which contains videos of 11 different
action categories. Each action is performed 3 times by 12

actors, and a total of 5 camera views are available.
To describe the action images, we extract feature descrip-

tors as defined in [20], and contract a group of spatiotempo-
ral cuboids (at most 200). For each video, the cuboids are
quantized into 1000 visual words. In our experiments, we
randomly choose two thirds of the cross-view action images
in each action category as cross-view data pairs for learning
our CCA. Then, the remaining one third of the images in the
source domain for training the SVM classifier as proposed in
[21]. Finally, the rest of the images in the target view are for
testing. We repeat the above procedure ten times and report
the average recognition performance.

We compare the performance of our method with the bag-
of-bilingual-words (BoBW) model proposed in [22], and the
use of standard CCA with the SVM proposed in [21]. The
recognition results of different approaches are listed in Ta-
ble 2. From this table, we see that our proposed method per-
formed favorably against the other two state-of-the-art meth-
ods. Based on our experiments in Sections 3.1 and 3.2, the
effectiveness of our proposed CCA for solving cross-domain
visual classification can be successfully verified.

4. CONCLUSIONS

In this paper, we presented an enhanced CCA with local den-
sity for solving cross-domain visual classification problems.
Our proposed CCA not only identifies representative cross-
domain data when relating different domains, it can further
suppress noisy or corrupted data during the learning process.
This cannot be easily achieved by existing locality-preserving
CCA. Our experiments on person re-identification and cross-
view action recognition supported the use of our method,
which outperformed CCA-based approaches.
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