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ABSTRACT

This paper presents a method to aggregate deep features
for an object-based image retrieval system. Several recent
works have demonstrated that it is quite important to selec-
tively aggregate features with a weighting scheme and extract
features from the limited regions likely to contain specific ob-
jects. Hence, the proposed method is to find possible candi-
date regions in an image, extract region descriptors from each
region, and match images in a region-by-region manner. To
adhere to using a pre-trained network without retraining or
spatial verification, several candidate regions are found in an
image and a more sophisticated pooling scheme is used for
better performance. Specifically, salient points with active re-
sponses are detected in the image and clustered to form the
candidate regions. In each region, we aggregate activations of
a convolutional layer with the emphasis on more active spa-
tial positions, and generate region descriptors effective for the
object-based image retrieval. Our experiments show that the
proposed method performs well on several public datasets, es-
pecially for the images showing the varied shapes or positions
of an object.

Index Terms— Image retrieval, object retrieval, feature
aggregation, visual recognition

1. INTRODUCTION

Image features from convolutional or fully-connected layers
of deep convolutional neural networks (CNNs) are widely
used in visual recognition including image retrieval [1]. Re-
cently, several works have proposed to aggregate the deep
features to represent a whole image with global features
from a fully-connected layer or local ones from a convolu-
tional/pooling layer, which we focus on in this work.

Since the success of CNNs in visual recognition [2], sev-
eral works have proposed to exploit the activations within
fully-connected layers of a CNN. For example, the “neural
codes” algorithm [3] utilizes the fully-connected layers of a
fine-tuned CNN, and the MOP-CNN [4] performs multi-scale
patch-based pooling also using the fully-connected layers of
a pre-trained CNN. Meanwhile, the activations within con-
volutional/pooling layers are used as dense local descriptors
with an aggregation method. The SPoC [1] method weights
the local descriptors close to an image center and aggregates

them with sum-pooling, and the CroW [5] algorithm empha-
sizes the descriptors on the positions with strong responses.
Regional max-pooled features are also used to represent an
image with the strongest response in each channel of a layer
[6, 7].

It can be inferred from the weighting methods [1, 5, 6] and
the ones using spatial verification [8, 9, 10] that the selective
aggregation (or use) of dense local descriptors is quite impor-
tant. Furthermore, some algorithms using object localization
[6] (a kind of spatial verification) or a region proposal net-
work (RPN) [7, 11] have demonstrated that feature extraction
from limited areas can improve performance of object-based
image retrieval. However, the methods not using spatial veri-
fication have the advantage that they can produce the features
of database images off-line. Even though applying an RPN or
fine-tuning of a CNN can also improve performance [3, 7], it
may make an image retrieval system specific for certain cate-
gories (e.g., landmarks).

Considering the issues stated above, we focus on devis-
ing a system that does not use spatial verification and utilizes
only a pre-trained network for general purposes. The pro-
posed method emphasizes salient regional features among the
general-purpose features. Specifically, we find spatially im-
portant candidate regions, and compare images with the re-
gional descriptors from those regions. In addition, we uti-
lize 2nd-order pooling [12, 13] to aggregate dense local fea-
tures and produce region descriptors. Our experiments show
that the comparison between region descriptors is effective in
object-based image retrieval and a simply adapted query ex-
pansion (QE) method can be applied to our system.

2. CANDIDATE REGION PROPOSAL

We consider the convolutional layers within a CNN pre-
trained for diverse categories of the ImageNet database [14]
such as VGG19 [15], where it can be seen as a general-
purpose feature extractor, not specific for any certain cate-
gories. The activations of a convolutional layer, which has
K channels and spatial dimensions W × H , can be seen as
dense local descriptors F = {fp} ∈ RW×H×K , where fp
contains the responses at a position p = (x, y).

The goal of this step is to find salient points in an input
image I of size WI × HI and group them into candidate re-
gions where the local descriptors are aggregated at the next
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step. To find more active spatial positions, at each position
p, we sum the responses over the channels and l2−normalize
the resultant map as in [5]:

F̄ = {f̄p} ∈ RW×H , f̄p =

K∑
k=1

fp,k, αp =
f̄p√∑
p f̄

2
p

(1)

where fp,k is the k-th element of fp. Then we define α ∈
RW×H , the elements of which are αp. Using the Hessian-
affine detector [16] salient points are detected in I , and sorted
in descending order by the value of αp at their positions,
where α is temporarily resized to the size WI ×HI . Then we
find the Nmax largest values of αp and define their positions
as a salient point set P = [p1, ...,pNmax ]. If the number of
salient points is not sufficient, or less than Nmin in an image,
we select the positions with the largest Nmin values within α
and then P is composed of them. Even though a salient point
set may be generated for every image in the latter way, the
Hessian-affine detector is used to search salient points also at
the less active regions in the convolutional layer.

For generating some candidate regions, the global fast k-
means clustering [17] is performed to group the salient points
in P into L clusters, C = [C1, ...,CL]. Then, the power set
of C is produced, and we exclude the empty set from it and
add the set of all the positions in I to it. For each element of
this set, its convex hull is computed, and we set the interiors
of the convex hulls as candidate regions R = [R1, ...,RM ],
where M = 2L is the number of the candidate regions. We
denote Rm resized by the ratio [W/WI , H/HI ] as R′m, and
if the size of R′m is (close to) zero, Rm is discarded.

3. DEEP FEATURE AGGREGATION

In addition to the spatial weights α, the channel weights β =
[β1, ..., βK ]T introduced in [5] are adopted to mitigate visual
burstiness [18]. The sparser the k-th channel of the layer gets,
the larger the value of βk becomes, because it is defined as:

Qk =
1

WH

∑
p

1[fp,k > 0],

βk = log

(
Kε+

∑
kQk

ε+Qk

)
, ∀k

(2)

where ε is a small positive constant. With β defined above,
we can compute a sum-pooled (1st-order pooled) descriptor
f1Rm

for each region Rm as:

f1Rm
= β ◦

∑
p∈R′

m

fp (3)

where ◦ is the Hadamard product, and each f1Rm
is l2-

normalized.
Meanwhile, the dimension of a local descriptor should be

rather small to perform the 2nd-order pooling in a region. To

this end, we can produce PCA bases U1 from the set {f1Rm
}

of a database for dimensionality reduction, so the local de-
scriptors with the reduced dimension of K ′ are given by:

f̃p = U1T (β ◦ fp) ∈ RK′
. (4)

Given the local descriptors that have the reduced dimension,
each region Rm has its 2nd-order average pooled descriptor
[12] with the spatial weights α:

Gavg
Rm

=
1∑

p∈R′
m
αp

∑
p∈R′

m

αp(f̃pf̃Tp )

f2Rm
= vec(log(Gavg

Rm
)) ∈ R

K′(K′+1)
2

(5)

where vec(·) vectorizes the upper (or lower) triangular matrix
of an input matrix. Then, each f2Rm

is l2-normalized. At last,
the set {f2Rm

} in a database can also produce a PCA whiten-
ing matrix for the 2nd-order pooled descriptors to have their
dimension of D:

f̃2Rm
= diag(s1, ..., sD)−1U2T f2Rm

(6)

where U2 is the PCA matrix and diag(s1, ..., sD) is the di-
agonal matrix whose diagonal entries sd are the associated
singular values. f̃2Rm

are l2-normalized and used to compute
the similarity between an image pair.

4. IMAGE SEARCH

4.1. Similarity measure for an image pair

Through the above procedures, an image getsM D-dimensional
region descriptors. When a query image Iq and one of tar-
get database images It have Mq and Mt region descriptors
f̃2qRm

and f̃2tRm
respectively, the similarity between these two

images is computed as:

ImSim(Iq, It) = max
m∈{1,...,Mq}
m′∈{1,...,Mt}

VecSim(f̃2qRm
, f̃2tRm′ ) (7)

where ImSim(·, ·) is the similarity between two images and
VecSim(·, ·) is the similarity between two descriptors such as
the cosine similarity equivalent to the Euclidean distance due
to the l2-normalization. By selecting the region best-matched
to the query image, we can search relevant images irrespective
of the size and positions of the regions.

4.2. Query expansion

To perform re-ranking, the query expansion (QE) technique
[19] can be adapted for our method. Because the best-
matched regions in images and their descriptors can be found
via an initial search, those region descriptors of the top NQE
results are averaged and l2-normalized to produce a new sin-
gle descriptor f̃2QE for a query. Following this procedure, at
the second search, (7) can be replaced with:

ImSim(Iq, It) = max
m′∈{1,...,Mt}

VecSim(f̃2qQE, f̃
2t
Rm′ ) (8)
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Table 1. Mean average precision (mAP) of ours and other
comparable methods on the experimental datasets. OF means
the experiments with uncropped (full) input images of Oxford.

Method Dim. Oxford OF Paris Holidays

Neural
Codes [3]

128 — 0.433 — 0.747
256 — 0.435 — 0.749
512 — 0.435 — 0.749

MOP-
CNN [4] 2,048 — — — 0.802

SPoC [1] 256 0.531 0.589 — 0.802

CroW [5]
128 0.592 — 0.746 —
256 0.654 — 0.779 0.831
512 0.682 — 0.796 0.849

R-MAC
[6]

256 0.561 — 0.729 —
512 0.669 — 0.830 —

Proposed
128M 0.682 0.690 0.786 0.875
256M 0.725 0.717 0.798 0.882
512M 0.741 0.730 0.802 0.886

CroW
+ QE [5]

128 — — 0.827 —
256 0.692 — 0.850 —
512 0.722 — 0.855 —

Proposed
+ QE

128M 0.750 0.745 0.851 —
256M 0.791 0.768 0.862 —
512M 0.816 0.781 0.864 —

5. EXPERIMENTAL RESULTS

In our experiments, Oxford (Oxford Buildings) [20], Paris
[21], and Holidays (INRIA Holidays) [22] datasets are used
to evaluate the performance of our method and compare it
with other ones. Oxford consists of 5,062 Flickr images of
Oxford landmarks including 55 queries. Paris is similar to
Oxford except that it contains 6,412 Paris landmark images.
The standard evaluation protocol of Oxford and Paris accom-
panies each query with a bounding box with which the query
is cropped. Holidays is composed of 1,491 vacation pho-
tographs including 500 queries. For each dataset, the perfor-
mance is reported as mean average precision (mAP) over its
queries. Following the experiments in [1, 3] etc., we manually
fixed some of Holidays images that are wrongly rotated by
±90 degrees. In extra experiments, the performance with the
original Holidays dataset was worse by approximately 0.04
mAP.

It is noticeable that the size of an input image has much
influence on performance from the fact that SPoC without
center-prior [1] and uCroW [5] are almost the same but they
are quite different in their reported mAP. Hence, we keep the
original sizes of Oxford and Paris images, and the Holidays

images are resized so that their longer dimension becomes
1,024. Caffe [23] package is used for CNNs and the dense
local descriptors are from the last convolutional layer of the
VGG19 model [15], where K = 512. Several parameters
are involved in the proposed method: Nmax, Nmin, L for the
candidate region proposal step, and K ′, D for the feature ag-
gregation step. We consistently set Nmax = 4, 000, Nmin =
300, L = 3,K ′ = 128 andD varies according to experiments
(D ∈ {128, 256, 512}).

Table 1 shows the comparison of our method with those
that extract features from pre-trained networks and do not use
spatial verification. Because, as for Oxford and Paris, the
standard evaluation protocol provides the bounding boxes of
query objects, we use only the whole cropped image RM to
compute the descriptor for each query. The number of sam-
ples for the query expansion, NQE, is set to 10 as in [5], and
the QE of CroW sums the descriptors representing their im-
ages, while our QE procedure uses a single regional vector for
each image, following (8). The QE process is not applied to
Holidays since the number of relevant images for each query
is too small to sum the descriptors of top-ranked images. Even
though, in most cases, our image descriptors are less compact
than those of the other methods due to the use of regional
descriptors, it is shown in Table 1 that our algorithm outper-
forms the others for Oxford and Holidays. As for Paris, the
queries and their relevant images have a tendency to be very
similar to each other on the whole, so it seems that the use of
regional descriptors may bring the side effect to this dataset.

Fig. 1. Comparison of variations of our method. O1 and O2
indicate the 1st-order and the 2nd-order pooling respectively,
while the subscripts “R” and “W” mean the use of descriptors
representing all of [R1, ...,RM ] and only RM respectively.
The word “full” means that query images are not cropped.

Fig. 1 shows the comparison of several variations of our
algorithm: the 1st-order pooling and the use of only a single
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Fig. 2. Examples of our retrieval results for several queries with (green) bounding boxes. The leftmost images are the queries
and the other ones are the top-ranked results for each query. At the top-left corners of images, green, red, and gray marks
indicate relevant, irrelevant, and ignored (“junk”-labeled) images, respectively. In each image, a yellow-shaded region indicates
the one best-matched to its query out of candidate regions, and it is smaller than its receptive field.

descriptor representing a whole image. The 1st-order pooled
descriptors are given by:

f1Rm
= β ◦

∑
p∈R′

m

αpfp (9)

that is a slightly-tweaked version of (3), and only using a sin-
gle descriptor of a whole image means that only the biggest
region RM is used for aggregation. Considering the values of
O1W , O2W , and O2R, it is notable that both the 2nd-order
pooling and the use of regional descriptors are complemen-
tary to our method. However, the regional aggregation is not
effective for the 1st-order pooled descriptors in all the cases,
and confirmed to be also not helpful for Paris for the reason
mentioned above.

Lastly, our retrieval examples are shown in Fig. 2. We
confirm that the regions best-matched to each query have the
shapes similar to each other, which helps to enhance the re-
trieval results. However, it is shown in the last two images of
Fig. 2 that some small irrelevant regions may be matched to a
query due to partly similar shapes or limited information.

6. CONCLUSIONS
We have proposed an object-based image retrieval method,
which finds candidate regions to extract region descriptors
and matches images in a region-by-region manner. For candi-
date region proposal, salient points with active responses of a
CNN are grouped into several clusters, the power set of which
forms the candidate regions. Second-order pooled descriptors
are extracted from the regions, and we compute the similarity
between two images with such region descriptors. Experi-
mental results show that the proposed method performs well
on the image retrieval datasets with diverse classes, but indi-
cate some limitations in that the use of regional descriptors
might bring a side effect in the case of images very similar to
each other on the whole or including so partly similar regions.
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