
HOW SHOULD WE EVALUATE SUPERVISED HASHING?

Alexandre Sablayrolles Matthijs Douze Nicolas Usunier Hervé Jégou

Facebook AI Research

ABSTRACT

Hashing produces compact representations for documents, to

perform tasks like classification or retrieval based on these

short codes. When hashing is supervised, the codes are

trained using labels on the training data. This paper first

shows that the evaluation protocols used in the literature for

supervised hashing are not satisfactory: we show that a trivial

solution that encodes the output of a classifier significantly

outperforms existing supervised or semi-supervised meth-

ods, while using much shorter codes. We then propose two

alternative protocols for supervised hashing: one based on

retrieval on a disjoint set of classes, and another based on

transfer learning to new classes. We provide two baseline

methods for image-related tasks to assess the performance of

(semi-)supervised hashing: without coding and with unsuper-

vised codes. These baselines give a lower- and upper-bound

on the performance of a supervised hashing scheme.

1. INTRODUCTION

Traditional hashing aims at reproducing a target metric, such

as the cosine similarity, based on compact codes. Large

databases are then be stored memory and queried efficiently.

Algorithms are tuned on a learn set, and evaluation is done

by looking for nearest neighbors of a query set in a database.

Recent works have proposed to use annotated data, in the

form of labeled images, to improve the hashing quality. In-

deed, even if hash codes yield noisy reconstructed vectors, be-

ing able to discriminate classes from these reconstructions is

a desirable property. In the literature, the proposed evaluation

protocol for this property involves two datasets: a train set,

with known or partially known labels and a query set with un-

known labels. The true positives are defined as images from

the train set belonging to the same class as the query. This

setting will be referred to as semi-supervised hashing (SSH).

In the particular case of supervised hashing (SH), the la-

bels of the train set are known. We can train a classifier and

use it to classify queries, returning for each query all ele-

ments of the assigned class. This trivial baseline, which is

not considered in overlooked in most works published on the

topic, outperforms state-of-the-art methods. This shows that

the evaluation protocol is flawed: it only requires to discrimi-

nate between known classes and not to reconstruct vectors in

a semantically meaningful way.

This paper makes the following contributions:

◦ We show that both SH and SSH are well addressed by

a trivial encoding on the output of a classifier, which

outperforms the results reported in the literature.

◦ We propose two tasks and corresponding baselines to

assess the performance of (semi-)supervised hashing:

transfer to retrieval and transfer learning. They corre-

spond to real use-cases.

◦ We show that, in the case of transfer learning, it is bet-

ter to insert the layer producing a compact code in the

middle of the network. In contrast, existing methods

routinely encode the last activation layer.

2. RELATED WORK

We distinguish three classes of methods for supervised hash-

ing: triplet loss hashing [1, 2, 3, 4], pairwise similarity-based

and label-based. Often, pairwise similarity and label infor-

mation are equivalent, because pairwise similarity is defined

as sharing the same label, and reciprocally labels are equiv-

alence classes of pairwise similarity relations. However they

are treated differently because constructing pairwise similar-

ity matrices scales quadratically with the number of labeled

samples, limiting these algorithms to small labeled sets.

Pairwise similarity based. Binary Reconstructive Embed-

dings (BRE) [5] minimize the distortion between the distance

matrix in the original space and the Hamming distances of the

codes. BRE is extended to the supervised case by replacing

the distance matrix by a pairwise similarity matrix. Following

this work, different techniques use both the similarity matrix

and the feature space: semi-supervised hashing [6], super-

vised hashing with kernels (KSH) [7], Semantic Hashing [8],

Minimal Loss Hashing [9], fast supervised hashing [10].

Label based. Supervised discrete hashing (SDH) [11] and su-

pervised quantization (SQ)[12] integrate the labels in a classi-

fication loss, along with a hashing loss. Recent work also ex-

plore deep architectures [13, 14] and augmented Lagrangian

[15] for supervised hashing.

Transfer learning. Indexing based on attributes or unrelated

classes is standard [16, 17]. Torresani et al. [17] remark that,

“Without the novel-category requirement, the problem is triv-

ial: the search results can be precomputed by running the

known category detector on each database image [...] and

1732978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



storing the results as inverted files”. We apply this remark to

hashing and extend it to the semi-supervised setting.

3. SUPERVISED HASHING: A SIMPLE BASELINE

This section describes the protocols used in the literature for

SSH and SH, and discuss how a simple strategy efficiently

solves the corresponding problems.

3.1. Evaluation protocols of SSH and SH

The task of SSH consists in indexing a dataset of N images

Itrain, of which a subset Ilabel ⊆ Itrain is labeled. SH is

the extreme case Ilabel = Itrain. Given an unlabeled query

image q, the system must return an ordered list of images from

the Itrain. For evaluation purposes, a dataset of queries is

given; the labels of the queries as well as all labels in Itrain
are known to the evaluator, even in the SSH setting, and an

image is deemed correct if it has the same label as the query.

The performance is measured in terms of precision or mean

average precision (mAP), which we now describe.

Given a query q, we first define δ(q, i) = 1 if the ith

image is correct for q, and 0 otherwise. The precision at

(rank) k is given by P (q, k) = 1
k

∑k

i=1 δ(q, i). Denoting

by cl(q) =
∑N

i=1 δ(q, i) the total number of correct im-

ages in Itrain, the average precision at k is AP(q, k) =
1

cl(q)

∑k

i=1 δ(q, i)P (q, i). The mAP at k (or simply mAP

when k = N ) is the mean AP over all test queries.

3.2. Retrieval through class probability estimation

It is well known in information retrieval [18] and learning to

rank that the optimal prediction for precision at k is given

by ranking items x ∈ Itrain according to their probability of

being correct for the query. This result extends to the opti-

mization of mAP.

Optimal ranking for SH. In the specific setup of SH where

the system knows the labels of the images in Itrain, the proba-

bility that an image x with label y is correct is the probability

P(y|q) that the query image has label y. The important point

here is that the probability of x being correct for q only de-

pends on the label of x. Thus, ordering the C labels so that

P(c1|q) ≥ ... ≥ P(cC |q), the optimal ranking is to return all

images of Itrain with label c1 first, followed by all images

with label c2, and so on.

In practice, P(.|q) is unknown, but we can train a clas-

sifier on Ilabel = Itrain which outputs probability estimates

P̂(c|q) for every label c, and compute the optimal ranking ac-

cording to P̂(.|q). Such probability estimates are given by,

e.g., multiclass logistic regression or a Convolutional Neural

Network (CNN) with a softmax output layer. Labels of Itrain
are stored on ⌈log2(C)⌉ bits or in an inverted file [17].

Relationship between classification accuracy and ranking

performance. If the classifier has classification accuracy p,

then the resulting mAP is at least p: whenever the classifier

correctly predicts the class of q, all images of that class will

be ranked first and the resulting AP(q) is 1; this happens on a

proportion p of the queries. Thus the classification accuracy

is a lower bound on the mAP.

Optimal ranking for SSH. In the more general setup of

SSH, we do not know the label of some images in Itrain. Yet,

considering the (true) conditional label probabilities P(c|q)
and P(c|x), the probability that x is correct for q is given by
∑C

c=1 P(c|q)P(c|x): it is the probability that both q and x
have the same label, assuming conditional independence of

the labels of the query and the image. Notice that this is the

dot product between the conditional label probability vectors

of q and x. Then, given probability estimates P̂ for the la-

bels of queries and images, which are obtained on Ilabel, we

consider two retrieval algorithms:

Classifier topline: For each image x of Itrain, store a vector

u(x) equal to either (1) the one-hot encoding vector of

the label of x if x ∈ Ilabel, or (2) the full conditional

probability vector P̂(.|x). Rank images x according to

the dot product
〈

P̂(.|q), u(x)
〉

. This strategy corre-

sponds to the optimal strategy, but requires storing the

probability vectors for images in Itrain\Ilabel.

Classifier hashed: Here we hash the conditional probability

vector. The first hashing method that we evaluate, is the

one-hot strategy, which stores the index of the maximal

activation on ⌈log2(C)⌉ bits. This approach, denoted

Classifier+one-hot in what follows, returns all images

of the strongest class first. The second encoding, re-

ferred to as Classifier+LSH, is locality-sensitive hash-

ing (LSH) with tight frames [19], a simple non data-

adaptive hashing scheme. This LSH method produces

binary vectors that are compared with Hamming dis-

tances. Therefore it can be used as drop-in replace-

ments for the competing binary encoding methods.

4. EXPERIMENTS: CLASSIFIERS ON SH AND SSH

Here we experiment with the classifier based retrieval method

on SSH. We use off-the-shelf classifiers, whose accuracies are

not necessarily the current state of the art. However, we show

that they perform better than SSH methods of the literature.

We consider two datasets: CIFAR10 and ImageNet.

CIFAR10 [20] is a dataset of 32x32 color natural images that

contains 60, 000 images divided into 10 classes. For deep

methods, we compare against DSH in the SH setting, and use

the provided train-test split of CIFAR10 to train an AlexNet.

For non-deep methods, we follow the GIST-based protocol of

[7, 11, 12]. We hold out 1, 000 query images (100 per class)

1733



Table 1. Retrieval (mAP): CIFAR10, SH and SSH protocols.

Features nlabel h Method bits mAP

GIST 59,000 1,000 SQ [12] 64 0.704

(SH) VDSH [14] 16 0.650

SQ [12] 128 0.712

Classifier+one-hot 4 0.762

GIST 5,000 1,000 SDH [11] 64 0.402

(SSH) Classifier+one-hot 4 0.377

Classifier+LSH 64 0.430

Classifier topline - 0.578

GIST 1,000 300 KSH [7] 12 0.232

(SSH) KSH [7] 48 0.284

Classifier+one-hot 4 0.270

Classifier+LSH 48 0.309

Classifier topline - 0.350

Deep 50,000 - DSH [21] 12 0.616

(SH) DSH [21] 48 0.621

AlexNet Classifier+one-hot 4 0.870

and index the remaining 59, 000 images, a variable number

nlabel of them being labelled (following the experimental pro-

tocols of the papers we compare with).

We start from the 512D GIST descriptors of the im-

ages; then we sample h of the labeled images (ai)
h
i=1 as

anchors. Images are represented by their Gaussian fea-

tures
[

exp(−‖x − ai‖
2
2/2σ

2)
]

i=1..h
∈ R

h, with σ =
1
N

∑N

i=1 minj=1,...,h ||xi − aj ||2. We fit a Logistic Re-

gression classifier on these features. We cross-validate the

regularization parameter on 10% of the train set.

Results are shown in Table 1. We compare our approach

to methods in the literature, using the numbers reported in the

cited papers. With ⌈log2(C)⌉ bits, mAP results are almost

as good as the state of the art, while being 4-8 times more

compact. With the same code size, simple LSH encodings

outperform competing methods by a large margin.

Although the work of [22] was both deep and a SSH setup,

their evaluation metric differs from our definition of mAP and

thus we have not included them in our comparison.

ImageNet (ILSVRC 2012), contains over 1.2 million natural

images of 1, 000 categories [23]. The training set is used for

learning and indexing purposes. The 50, 000 validation im-

ages are used as queries. In [12], the images are represented

by activations of a VGG16 network [24].

The authors of [12] experiment on ImageNet, in the SH

setting. They use a CNN trained on ImageNet, and then use

the train labels to train their quantization method. We use the

same classifier from Caffe (VGG16) to classify query images,

and store train labels as 1-hot vectors. The results in Table 2

show that our baseline method is more accurate and an order

of magnitude more compact.

Table 2. Results on ImageNet with the SH protocol.

Descriptors Method bits mAP @1500

VGG SQ [12] 128 0.620

VGG Classifier+one-hot 10 0.664

5. PROPOSED EVALUATION PROTOCOLS

The previous section has shown that existing protocols fail to

capture desirable properties of supervised hashing schemes.

In this section, we propose two evaluation tasks, namely re-

trieval of unseen classes, and transfer learning to new classes.

They correspond to application cases on large and growing

user-generated datasets, where classifiers are trained on fluc-

tuating training sets or for new labels. For computational

reasons the features cannot be recomputed when the classes

evolve, and mid-level features must be compressed in a way

that preserves their semantic information. The two protocols

we consider differ only in the evaluation metric: ranking ver-

sus class accuracy.

Dataset definition. In both tasks, we start from a standard

classification dataset but we use separate classes at test time,

similar to a metric learning setup [25]. 75% of the classes are

assumed to be known when learning the hashing function, and

the 25% remaining classes are used to evaluate the encoding

/ hashing scheme. We call train75/test75 the train/test images

of the 75% classes and train25/test25 the remaining ones.

In practice, we shuffle the classes randomly and use 4

folds to define 4 of those splits. Performance measures are

averaged over the folds. We split the classes of an existing

dataset rather than combining different datasets, because the

latter would introduce a lot of noise due to dataset bias [26].

In both protocols, test75 is not used at all.

As feature representations, we use the activation maps at

a given level of a CNN trained on train751. The top-line is

when these activation maps are stored completely. To evaluate

the hashing, they are encoded using hashing methods that can

reconstruct an approximation of the original features.

Protocol 1: Retrieval of unseen classes. In this setup, we use

the hashing scheme to index train25 and use test25 as queries.

For each query from test25, we retrieve nearest neighbors

among train25 and then compute the mAP. The nearest neigh-

bors are defined by the L2 distance between descriptors. This

is a relevant distance measure for CNN activation maps [27].

The labels of train25 are used for evaluation only. This setup

is like an instance search approach except that the ground-

truth is given by the class labels. The train75 - train25 - test25

split is the supervised equivalent of the learn - database -

query split in unsupervised hashing.

Protocol 2: Transfer learning. A new classifier with the

same structure as the top of the original CNN is trained from

1Other types of features, such as GIST are also possible.

1734



Table 3. Retrieval performance (mAP, Protocol 1), when fea-

tures are extracted at different layers in the network.

CIFAR-100

Layer conv3 fc1 fc2 fc3 softmax

Full 15.6% 16.3% 21.3% 22.2% 22.8%

PQ, M=4 16.6% 16.8% 21.0% 21.2% 22.0%

ImageNet

Layer fc1 fc2 fc3 softmax +PQ, M=8

mAP 4.72% 10.89% 11.3% 13.52% 11.4%

Table 4. Accuracy in transfer (protocol 2) for CIFAR-100

when features are extracted at different layers.

Layer conv3 fc1 fc2

Full 69.6% 61.8% 57.7%

PQ, M=4 43.4% 45.3% 47.4%

scratch using the stored train25 descriptors. The classification

accuracy is reported on test25. The goal is to maximize the

transfer accuracy on test25.

Compared to recomputing the features from the images,

this approach offers two advantages. First, the features are

stored in a compact and semantic way. Secondly, it avoids the

computationally intensive computation of the low-level acti-

vations: in the case of AlexNet on CIFAR-10, 80% of the

computation time is spent in the lower convolutional layers.

6. BASELINES ON THE TRANSFER-BASED

EVALUATION PROTOCOL

We evaluate retrieval and classification methods based on

hashed descriptors with our two protocols on CIFAR-100 [20],

which is the same dataset as CIFAR-10 except that it is di-

vided into 100 classes instead of 10), and ImageNet. We

used the AlexNet [28] architecture, with 3 (resp 5) convolu-

tional layers (“conv”) and 2 fully-connected (“fc”) ones for

CIFAR-100 (resp ImageNet).

As an unsupervised baseline for hashing, we report the

performance of the Product Quantizer (PQ) [29]. This is

an efficient method that can reconstruct approximate vec-

tors from the codes. The PQ parameter M is the number of

quantizers and the number of bytes of the produced codes.

Retrieval. Retrieval on the classification layer is done us-

ing an inner product similarity, for all other layers we use L2

distance. Table 3 reports the results with full activations and

PQ. The performance increases monotonically with the CNN

level. This is consistent with prior observations [17] that at-

tribute vectors from arbitrary classes are an efficient repre-

sentation for global image matching, and further extends the

Fig. 1. Accuracy in transfer (Protocol 2), for layer conv3 on

CIFAR-100, as a function of the number of bytes per image.

���

���

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ���

��
��
��
��

����������������������

�����������
����������

findings of Section 3 to a different set of classes. The hier-

archy of performance is maintained with the PQ encoding.

For CIFAR-100, where the softmax outputs 75D vectors, the

performance loss due to the hashing is limited even with rela-

tively small 32-bit codes. For Imagenet, the raw retrieval per-

formance is lower, due to the larger number of classes (250).

64-bit unsupervised encoding looses about 2%.

Classification. Results of Protocol 2 (Table 4) show that there

is a trade-off between classification error and quantization er-

ror: activations of lower layers are more general-purpose (see,

e.g., [30]), so training on train25 is more effective. However,

lower layers have larger activation maps, which are harder

to encode, which leads to a compromise. In this example,

the best transfer performance we can achieve with 4 bytes is

47.7%. For a higher number of bytes, however, it is worth

putting the quantization layer lower in the network.

Figure 1 shows that more bytes bring the performance

closer to the full-vector performance. The margin for im-

provement left to supervised hashing is to bring this perfor-

mance closer to the 69.6% obtained without any encoding.

7. CONCLUSION

In this paper, we showed that the supervised hashing proto-

cols currently used in the literature are flawed because the

evaluation is done on the same classes as the training. In this

setting, encoding in binary the output of a simple classifier

provides a very strong baseline. To circumvent this issue, we

introduced two new protocols that evaluate hashing functions

on a disjoint set of labels. The first one evaluates the retrieval

performance on a disjoint set of classes. It is very close to

the classical setup of unsupervised hashing, and traditional

methods seem to perform well. The second protocol evalu-

ates the accuracy of a classifier trained on hash codes with

classes never seen before.

1735



8. REFERENCES

[1] Mohammad Norouzi, David J Fleet, and Ruslan R

Salakhutdinov, “Hamming distance metric learning,” in

NIPS, 2012.

[2] Jun Wang, Wei Liu, Andy X. Sun, and Yu-Gang Jiang,

“Learning hash codes with listwise supervision,” in

ICCV, 2013.

[3] Jianfeng Wang, Jingdong Wang, Nenghai Yu, and

Shipeng Li, “Order preserving hashing for approximate

nearest neighbor search,” in ACM Multimedia, 2013.

[4] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu

Tan, “Deep semantic ranking based hashing for multi-

label image retrieval,” in CVPR, June 2015.

[5] Brian Kulis and Trevor Darrell, “Learning to hash with

binary reconstructive embeddings,” in NIPS, December

2009.

[6] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang, “Semi-

supervised hashing for scalable image retrieval,” in

CVPR, June 2010.

[7] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and

Shih-Fu Chang, “Supervised hashing with kernels.,” in

CVPR, June 2012.

[8] Ruslan Salakhutdinov and Geoffrey Hinton, “Semantic

hashing,” IJAR, 2009.

[9] Mohammad Norouzi and David J. Fleet, “Minimal loss

hashing for compact binary codes.,” in ICML, 2011.

[10] Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton

van den Hengel, and David Suter, “Fast supervised

hashing with decision trees for high-dimensional data,”

in CVPR, June 2014.

[11] Fumin Shen, Chunhua Shen, Wei Liu, and Heng

Tao Shen, “Supervised discrete hashing,” in CVPR,

June 2015.

[12] Xiaojuan Wang, Ting Zhang, Guo-Jun Qi, Jinhui Tang,

and Jingdong Wang, “Supervised quantization for simi-

larity search,” in CVPR, June 2016.

[13] Thanh-Toan Do, Anh-Zung Doan, and Ngai-Man Che-

ung, “Learning to hash with binary deep neural net-

work,” ECCV, 2016.

[14] Ziming Zhang, Yuting Chen, and Venkatesh Saligrama,

“Efficient training of very deep neural networks for su-

pervised hashing,” in CVPR, June 2016.

[15] Thanh-Toan Do, Anh-Dzung Doan, Duc Thanh Nguyen,

and Ngai-Man Cheung, “Binary hashing with semidef-

inite relaxation and augmented lagrangian,” ECCV,

2016.

[16] C. H. Lampert, H. Nickisch, and S. Harmeling, “Learn-

ing to detect unseen object classes by between-class at-

tribute transfer,” in CVPR, 2009.

[17] Andrew Fitzgibbon Lorenzo Torresani, Martin Szum-

mer, “Efficient object category recognition using

classemes,” in ECCV, 2010.

[18] Stephen E Robertson, “The probability ranking princi-

ple in ir,” Journal of documentation, 1977.

[19] Hervé Jegou, Teddy Furon, and Jean-Jacques Fuchs,

“Anti-sparse coding for approximate nearest neighbor

search,” in ICASSP, January 2012.

[20] Alex Krizhevsky, “Learning multiple layers of features

from tiny images,” Tech. Rep., University of Toronto,

2009.

[21] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin

Chen, “Deep supervised hashing for fast image re-

trieval,” in CVPR, June 2016.

[22] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and

Shuicheng Yan, “Supervised hashing for image retrieval

via image representation learning,” AAAI, 2014.

[23] Wei Dong, Richard Socher, Li Li-Jia, Kai Li, and

Li Fei-Fei, “Imagenet: A large-scale hierarchical im-

age database,” in CVPR, June 2009.

[24] K. Simonyan and A. Zisserman, “Very deep convo-

lutional networks for large-scale image recognition,”

arXiv preprint arXiv:1409.1556, 2014.

[25] Thomas Mensink, Jakob Verbeek, Florent Perronnin,

and Gabriela Csurka, “Metric learning for large scale

image classification: Generalizing to new classes at

near-zero cost,” in ECCV, December 2012.

[26] A. Torralba and A. A. Efros, “Unbiased look at dataset

bias,” in CVPR, 2011.

[27] Artem Babenko, Anton Slesarev, Alexandr Chigorin,

and Victor Lempitsky, “Neural codes for image re-

trieval,” in ECCV, September 2014.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-

ton, “Imagenet classification with deep convolutional

neural networks,” in NIPS, December 2012.

[29] Hervé Jegou, Matthijs Douze, and Cordelia Schmid,

“Product quantization for nearest neighbor search,”

IEEE Trans. PAMI, January 2011.

[30] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod

Lipson, “How transferable are features in deep neural

networks?,” in NIPS, 2014.

1736


