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ABSTRACT

Binary embedding is an effective way for nearest neighbor (NN)
search as binary code is storage efficient and fast to compute. It
tries to convert real-value signatures into binary codes while
preserving similarity of the original data. However, it greatly
decreases the discriminability of original signatures due to the
huge loss of information. In this paper, we propose a novel
method double-bit quantization and weighting (DBQW) to solve
the problem by mapping each dimension to double-bit binary
code and assigning different weights according to their spatial
relationship. The proposed method is applicable to a wide varie-

ty of embedding techniques, such as SH, PCA-ITQ and PCA-RR.

Experimental comparisons on two datasets show that DBQW for
NN search can achieve remarkable improvements in query accu-
racy compared to original binary embedding methods.

Index Terms—Double-bit quantization; weighted hamming
distance; binary embedding; nearest neighbor search

1. INTRODUCTION

Nearest neighbor (NN) search has been one of the key
problems of visual applications including image retrieval
[1], object recognition [2] and copy detection [3]. NN
search consists in finding the closest matches of a given
query signature in large amounts of reference signatures.
When searching similar signatures in a large-scale database
composed of floating-point values, it usually computes the
Euclidean distance between the query and all the reference
signatures, which is quite costly. As a consequence, han-
dling these large quantities of data has become a challenge
on its own.

When coping with massive amounts of data, there exist
two most influential factors: one is the computational cost,
and the other is memory usage. Binary codes can exactly
handle the two problems. On one hand, the calculation of
hamming distance between two binary codes is extremely
efficient and requires just a small number of machine in-
structions. On the other hand, the memory cost of binary
codes is much less than real-valued signatures. These con-
siderations directly lead to the growing interests in embed-
ding real-valued signatures in compact binary codes. De-
spite of its remarkable advantages, the drawback is also
obvious: it greatly reduces the distinctiveness between dif-
ferent signatures. For example, the possibilities of Euclide-
an distance between 32-dimensional real-valued signatures
are endless. However, the hamming distance between two
32-bit binary codes only has limited 33 kinds of possibili-
ties from 0 to 32. So presenting real-valued signatures in
binary codes undoubtedly results in lower accuracy.
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In general, several binary embedding algorithms, such as
locality sensitive hashing (LSH) [4], PCA embedding
(PCAE) [5], spectral hashing (SH) [6], PCA with random
rotations (PCA-RR), and PCA with iterative quantization
(PCA-ITQ) [7] can be decomposed into two steps: 1) The
signatures are first embedded in an intermediate space and
2) Thresholding is performed in this space to obtain binary
outputs. Certainly, the higher dimensionality of the signa-
ture, the higher retrieval accuracy we can get. However, we
find in almost all of binary embedding algorithms, the av-
erage discriminability per dimension decreases gradually
with the increase of dimensionality. Therefore, when the
dimensionality is small, we can get more discriminability
per dimension. Among the mentioned binary embedding
methods, the step 2 usually maps each dimension in inter-
mediate space to 1-bit binary code in hamming space. If we
assign 2-bit binary code to each k dimension, in theory, the
discriminability per dimension is twice of 1-bit quantiza-
tion, in which the retrieval accuracy is higher than that of
2k-dimension.

Building on the previous analysis, we propose a double-
bit quantization and weighting (DBQW) algorithm for NN
search which consists of two aspects:

e  Double-bit quantization (DBQ). We first map each
dimension of intermediated data to double-bit rather
than one for higher retrieval accuracy.

e  Weighted hamming distance (WHD). The hamming
distances between binary codes based on DBQ are
assigned different weights according to their spatial
relationship.

In this way, we can preserve more discriminability of the

original signatures while take advantages of binary codes to

store and compare signatures efficiently.

In our experiments, we show that the DBQW can be ap-
plied very broadly, such as LSH [4], PCAE [5], SH [6],
PCA-RR, and PCA-ITQ [7]. We evaluate our approach on
two data sets BIGANN [9] and Calteachl101 [10]. It
demonstrates that the proposed DBQW consistently and
significantly improves the retrieval accuracy of binary em-
bedding methods over the traditional ones. In some cases,
DBQW can provide precision on the order of 12%~48%
against original methods.

The rest of the paper is organized as follows. In Section
2, we precisely describe the novel DBQW algorithm. Sec-
tion 3 presents the experimental results on BIGANN and
Calteach101 for NN search. Finally, conclusions are given
in Section 4.
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2. THE PROPOSED METHOD

In this section, we propose DBQW algorithm to improve
retrieval accuracy for NN search. Firstly, we will briefly
introduce binary embedding. Next, the novel DBQ method
is given. Then, we specifically present the notion of WHD
and its computation.

A.  Double-Bit Quantization

1)  Binary Embedding Algorithm

The prominent advantages of binary codes lead to the ex-
plosion in binary embedding techniques. Several successful
binary embedding methods have been proposed, such as
LSH, SH, PCAE, PCA-RR and PCA-ITQ. Binary embed-
ding aims to transform real-value signatures into binary
codes, while it guarantees that similar signatures are
mapped into the same binary codes with a high probability.

In order to express the meaning of binary embedding
clearly, we introduce a set of notations. Let s be an image
signature with K dimensions in space Q and let h; be a
binary embedding function, i.e., hy:Q — {0,1}. A setH =
{hy, k =1..K}of K functions define a multidimensional
embedding function h:Q — {0,1}¢ with h(s) = [hy(s)
hk(s)]" . Note that real-value signatures are not directly
converted into binary codes via binary embedding. For
LSH, SH, PCAE and PCAE-ITQ, binary embedding func-
tion hy, can be decomposed as follows:

hie(s) = qi[gi ()], (1
where g, (s): Q = R(the intermediated space) is projection
function and q;(s):R — {0,1} is quantization function.
That is, binary embedding firstly projects image signature s
to real-valued multidimensional vector g(s) = [gx(s), k =
1...K]', which is an extremely good approximation to the
original signature. Next, the real-valued data will be quan-
tized into binary codes by thresholding (0 is often set as the
threshold). That is, if g;(s)> 0, s; is mapped to 1. Other-
wise, s; will be mapped to 0. Thus, traditional quantization
function just roughly divides each dimension into two parts
decoded as 0 or 1, which greatly reduces the discriminabil-
ity [4]. To alleviate this problem, we propose to retain more
information of the original by assigning double-bit to each
dimension of the intermediated data.

2)  Double-Bit Quantization

In the previous section, we elaborate that binary embedding
methods greatly reduce the discriminability of original sig-
natures. To achieve higher accuracy, a lot of related works
mainly concentrate on improving the performance of pro-
jection functions gy. Instead, we propose a DBQ function
to assign double-bit to each dimension of the intermediated
data. The steps of DBQ are summarized below:

a) Signature projection and normalization. For a given
signature x with K dimensions, we firstly use a multidimen-
sional projection function g(s) = [gk(s),k=1..K]' to
map original signature x to real-value vector g(x) (the in-
termediated data). Next, to enhance the efficiency of com-
parisons, the vector is normalized by its [;norms V" for each
dimension and the normalized intermediated data [(x) = [I(s),
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Figure 1 Encoding signature. Each dimension is divided into four parts
by the sign and two medians

k = 1..K]" are obtained with

L;(s) = N[gi(s)]. i=1..K )
b) Data partition. We divide the intermediate data for each
dimension into two categories according to the sign of the
corresponding element, after which we get the medians of
both two categories for all the dimensions. The medians of
the negative and positive parts in dimension 7 are represent-
ed symbolically by nm; and pm; respectively. Based on the
sign and two medians, each element of the intermediated
vectors can be divided into four categories, shown as Fig. 1.
Despite its crude nature, we will see that the partition
scheme leads to competitive results on a variety of binary
embedding methods.

¢) Binary quantization. After the partition, a novel quanti-
zation function needs to be raised, as positional relations of
elements in each dimension via original quantization func-
tion have only two cases: either on the same side or the
opposite side. In order to handle the new partition scheme,
we quantize each dimension into double-bit. By this way,
the quantization method may adapt well to the four rela-
tions of the elements in each dimension, as showed in Fig.1.
For iy, dimension, DBQ function is defined as:

11, lf li(s) = pm;

_ 10, if l;(s) =0andl;(s) <pm;
DBQi(s) = 01, if 1;(s) < 0and l;(s) > nm; 3)

00, if Ui(s) <nm;

Since intermediate data preserves good approximation to
the similarity of original signatures, it has a high probabil-
ity to map g;(x) and g;(y) to the same category if x is the
nearest neighbor of y. Conversely, if signature x and y are
far from each other, g;(x) and g;(y) are more likely to be
mapped far apart. Thus, the quantization scheme can natu-
rally preserve the similarity between two signatures.

B.

For binary codes generated from DBQ, we can’t directly
calculate the hamming distance between them. There are
two reasons. First, DBQ partitions each dimension of in-
termediate data into four parts. Thus, the quantized signa-
tures have four kinds of spatial relationship which can be
represented by 4 kinds of distances (0, 1, 2 and 3). Howev-
er, the hamming distance between 2-bit binary codes only
has three possible values (0, 1 and 2). Second, XOR opera-
tion can’t describe the distance between 2-bit codes accu-
rately in our quantization method. For example, the dis-
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Figure 3 Influence to precision of the weighted hamming distance on the Caltech101 dataset using 320-d gist descriptors.

tance of 01 and 10 is 1, but the hamming distance between
them is 2. Likewise, the distance between 00 and 11 is 3,
while the hamming distance is 2. Thus, we propose a novel
WHD to satisfy the distance of DBQ binary codes. For a
given query, we first build several look-up tables, and then
the WHD is calculated by looking up the precomputed
look-up tables. Notes that one dimension refers to 2-bit
binary code in the following for clear expression.

Assume x, ¢ are the intermediate data of reference signa-
ture and query signature respectively. To calculate the
weighted hamming distance between x and ¢ online, we
should sum up the distance of each dimension composed of
2-bit. Let dp(DQy(x), DQx(q)) represent the weighted
hamming distance between k-th dimension of x and g
which is demonstrated as follows:

00 01 10 11
00| O 1 2 3
01 1 0 1 2
10 2 1 0 1
11 3 2 1 0

Table 1. Weighted hamming distance between each dimension

Online, for a given query q, we precompute and store in
look-up tables the following query-dependent values

2! = di(DQi(x), DQi(q)) “
Assume dy,y stands for the weighted hamming distance
between x and ¢. By definition, we have

dyyy (X, q) = Zﬂ/ﬁc’q

The cost of computing the values f is negligible with re-
spect to that of computing dy, (%, q) for a large number of
reference signatures x. The sum (5) can be computed very
efficiently by grouping the dimensions. In our implementa-
tion, we subdivide a vector into blocks of four dimensions
(8-bit). Assuming that the number of dimensions & is a mul-
tiple of 4, to simplify the notation, we get

)

k/4-1 j=4

CIEX ) EDIPW N

4k+j
k=0 j=1

(6)
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Because binary subvector [DQux(x), DQups1(x), DQupy2(x),
DQur+3(x)] fits in 1 byte, each sum Z;-Zi[)’f,ﬁj can only
take 256 possible values. We can precompute these 256
values and store them in a look-up table. In total, we need
to calculate £/4 tables for the computation.

Generally, the k74 look-up tables will be cached since the
tables only require little computer storage. Therefore, the
weighted hamming distance can be simply calculated by
adding values from each look-up table together rather than
computing hamming distance for each reference binary
code via XOR operation. Undoubtedly, the inquiry speed
will be significantly increased in our method. For the con-
sistency of experiments, the comparative experiments we
conduct also use look-up tables to compute the traditional
hamming distance.

3. EXPERIMENTS

In this section, we show the benefits of the DBQW. We
first introduce the two data sets and evaluation metrics used
in the experiments. Then intensive comparisons between
methods applying DBQW and traditional binary embedding
methods are given.

A.  Dataset and Evaluation Metrics

We use two different datasets Caltech101 [10] and BIG-
ANN [9] to evaluate our method. The first dataset Cal-
tech101 contains approximately 60,000 images grouped in
101 classes. Through our experiments, we discard the no-
tion of class and extract 320-d GIST for each image in the
dataset. Then, we split the data set into three different sets.
We randomly select 1,000 GIST to serve as queries, and
5,000 random GIST to serve as unsupervised training data.
The remaining signatures are used as database. The next
dataset BIGANN contains 1M SIFT [9] signatures which
consists three vector subsets: a 100K training set, a 1M
database set and a 10K query set. Each SIFT signatures is a
128D real-value vector. On both datasets, we evaluate the
retrieval of traditional embedding algorithms and those
applying DBQW, using Euclidean neighbors as ground
truth. Note that there is no difference in time cost between
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Figure 5 Influence to precision of the weighted hamming distance on the BIGANN dataset using 128-d sift descriptors.

traditional binary embedding methods and those adopting
DBQW, as all the methods execute exhaustive search in
binary codes of the same dimensionality via look-up tables.
In our experiments, the precision and recall with respect to
the number of bits are used to evaluate our method. On
Caltech101, we first compare the recall@10 and preci-
sion@] of several binary embedding methods, such as PCA,
LSH, SH, PCA-ITQ and those applying DBQW. Then we
conduct the same experiments as Caltech101 on BIGANN.

B.  Results

Each experiment has 1000 queries, in which precision and
recall are used as metrics. For the different binary embed-
ding methods in two different datasets, the results using
DBQW are better than original binary embedding methods.

To get the double-bit binary codes, the signatures in
training set are mapped to the intermediate data, and the
medians are obtained according to the sign of each dimen-
sion. Then we transform both reference signatures and que-
ry signatures to intermediate data in the same way as train-
ing set. Next, the data are quantized into double-bit binary
codes through DBQW. Finally, the weighted hamming dis-
tance is calculated for each binary code.

It show the comparison results on two datasets in Fig 2, 3,
4 and 5 of original binary embedding algorithms and the
algorithms with our proposed DBQW. The results demon-
strate that DBQW consistently improves the retrieval accu-
racy over the original binary embedding algorithms and is
independent of the datasets, the descriptors, and the binary
embedding methods. Here are two examples: On Cal-
tech101 (Fig. 1(a)), we observe a relative improvement on
recall of 80.2% at 256-bit when using RR-PCA. On BIG-
ANN, when SH is employed, we can observe a relative
improvement of precision of 42.3% (Fig. 4(e)) at 128 bits.
The comparison results show that all methods make a great
progress with DBQW. This can be explained by two prima-
ry factors:

On one hand, double-bit quantization preserves more in-
formation of original signatures. The average discrimina-
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tion per bit declines as the dimensionality increases with
one-bit quantization. Here is an example, For ITQ, when
the dimensionality k& is 128, the precision is 14.2% on Cal-
teachl01. Given the same circumstances except for the
dimension being 2k, the precision is 16.9% which only has
19% relative improvement. Thus, the discrimination per bit
is stronger when & is smaller. In theory, 24-bit binary code
using DBQW doubles the retrieval accuracy of k-bit binary
code using one-bit quantization. That is to say, when the
dimension of binary codes is both 2k, the discrimination of
DBQW significantly outperforms one-bit quantization.

On the other hand, weighted hamming distance has more
distinguishing ability. Weighted hamming distance has a
wider range than original method. For example, assume the
number of bit is 64, the range of hamming distance is 0 to
64. However, the range of weighted hamming distance is 0
to 128, which is twice of the former. As a consequence,
DBQW obtains stronger discrimination than traditional
binary embedding methods.

4. CONCLUSIONS

In this paper, we propose the novel double-bit quantization
and weighting algorithm for nearest neighbor search. To
improve retrieval accuracy, each dimension of intermediate
data in the dataset is quantized into double-bit binary codes
offline. Then look-up tables are precomputed to calculate
the weighted hamming distance to get final results. Exper-
imental results show DBQW can achieve about up to 12%
absolute enhancements on precision@! and 16% on re-
call@10 compared to the original methods. It indicates that
DBQW performs competitive results by assigning more
weight to signatures close to query in hamming space. We
believe the proposed DBQW can improve the accuracy of
many nearest neighbor search applications.
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